Spaces:
Running
on
A10G
Running
on
A10G
# TODO unify/merge origin and this | |
# TODO save & restart from (if it exists) dataframe parquet | |
import torch | |
# lol | |
DEVICE = 'cuda' | |
STEPS = 6 | |
output_hidden_state = False | |
device = "cuda" | |
dtype = torch.bfloat16 | |
import matplotlib.pyplot as plt | |
import matplotlib | |
import logging | |
from sklearn.linear_model import Ridge | |
import os | |
import imageio | |
import gradio as gr | |
import numpy as np | |
from sklearn.svm import SVC | |
from sklearn.inspection import permutation_importance | |
from sklearn import preprocessing | |
import pandas as pd | |
from apscheduler.schedulers.background import BackgroundScheduler | |
import sched | |
import threading | |
import random | |
import time | |
from PIL import Image | |
from safety_checker_improved import maybe_nsfw | |
torch.set_grad_enabled(False) | |
torch.backends.cuda.matmul.allow_tf32 = True | |
torch.backends.cudnn.allow_tf32 = True | |
prevs_df = pd.DataFrame(columns=['paths', 'embeddings', 'ips', 'user:rating', 'latest_user_to_rate', 'from_user_id']) | |
import spaces | |
start_time = time.time() | |
####################### Setup Model | |
from diffusers import AnimateDiffPipeline, MotionAdapter, EulerDiscreteScheduler, LCMScheduler, AutoencoderTiny, UNet2DConditionModel, AutoencoderKL, utils | |
utils.logging.disable_progress_bar | |
from transformers import CLIPTextModel | |
from huggingface_hub import hf_hub_download | |
from safetensors.torch import load_file | |
from PIL import Image | |
from transformers import CLIPVisionModelWithProjection | |
import uuid | |
import av | |
def write_video(file_name, images, fps=17): | |
container = av.open(file_name, mode="w") | |
stream = container.add_stream("h264", rate=fps) | |
# stream.options = {'preset': 'faster'} | |
stream.thread_count = 1 | |
stream.width = 512 | |
stream.height = 512 | |
stream.pix_fmt = "yuv420p" | |
for img in images: | |
img = np.array(img) | |
img = np.round(img).astype(np.uint8) | |
frame = av.VideoFrame.from_ndarray(img, format="rgb24") | |
for packet in stream.encode(frame): | |
container.mux(packet) | |
# Flush stream | |
for packet in stream.encode(): | |
container.mux(packet) | |
# Close the file | |
container.close() | |
def imio_write_video(file_name, images, fps=15): | |
writer = imageio.get_writer(file_name, fps=fps) | |
for im in images: | |
writer.append_data(np.array(im)) | |
writer.close() | |
image_encoder = CLIPVisionModelWithProjection.from_pretrained("h94/IP-Adapter", subfolder="sdxl_models/image_encoder", torch_dtype=dtype, | |
device_map='cuda') | |
#vae = AutoencoderTiny.from_pretrained("madebyollin/taesd", torch_dtype=dtype) | |
# vae = ConsistencyDecoderVAE.from_pretrained("openai/consistency-decoder", torch_dtype=dtype) | |
# vae = compile_unet(vae, config=config) | |
unet = UNet2DConditionModel.from_pretrained('emilianJR/epiCRealism', subfolder='unet',).to(dtype).to('cpu') | |
text_encoder = CLIPTextModel.from_pretrained('emilianJR/epiCRealism', subfolder='text_encoder', | |
device_map='cpu').to(dtype) | |
adapter = MotionAdapter.from_pretrained("wangfuyun/AnimateLCM") | |
pipe = AnimateDiffPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", motion_adapter=adapter, image_encoder=image_encoder, torch_dtype=dtype, unet=unet, text_encoder=text_encoder) | |
pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config, beta_schedule="linear") | |
pipe.load_lora_weights("wangfuyun/AnimateLCM", weight_name="AnimateLCM_sd15_t2v_lora.safetensors", adapter_name="lcm-lora",) | |
pipe.set_adapters(["lcm-lora"], [.9]) | |
pipe.fuse_lora() | |
#pipe = AnimateDiffPipeline.from_pretrained('emilianJR/epiCRealism', torch_dtype=dtype, image_encoder=image_encoder) | |
#pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config, timestep_spacing="trailing", beta_schedule="linear") | |
#repo = "ByteDance/AnimateDiff-Lightning" | |
#ckpt = f"animatediff_lightning_4step_diffusers.safetensors" | |
pipe.load_ip_adapter("h94/IP-Adapter", subfolder="models", weight_name="ip-adapter_sd15_vit-G.bin", map_location='cpu') | |
# This IP adapter improves outputs substantially. | |
pipe.set_ip_adapter_scale(.8) | |
pipe.unet.fuse_qkv_projections() | |
#pipe.enable_free_init(method="gaussian", use_fast_sampling=True) | |
pipe.to(device=DEVICE) | |
#pipe.unet = torch.compile(pipe.unet) | |
#pipe.vae = torch.compile(pipe.vae) | |
def generate_gpu(in_im_embs): | |
in_im_embs = in_im_embs.to('cuda').unsqueeze(0).unsqueeze(0) | |
output = pipe(prompt='', guidance_scale=0, added_cond_kwargs={}, ip_adapter_image_embeds=[in_im_embs], num_inference_steps=STEPS) | |
im_emb, _ = pipe.encode_image( | |
output.frames[0][len(output.frames[0])//2], 'cuda', 1, output_hidden_state | |
) | |
im_emb = im_emb.detach().to('cpu').to(torch.float32) | |
return output, im_emb | |
def generate(in_im_embs): | |
output, im_emb = generate_gpu(in_im_embs) | |
nsfw = maybe_nsfw(output.frames[0][len(output.frames[0])//2]) | |
name = str(uuid.uuid4()).replace("-", "") | |
path = f"/tmp/{name}.mp4" | |
if nsfw: | |
gr.Warning("NSFW content detected.") | |
# TODO could return an automatic dislike of auto dislike on the backend for neither as well; just would need refactoring. | |
return None, im_emb | |
output.frames[0] = output.frames[0] + list(reversed(output.frames[0])) | |
write_video(path, output.frames[0]) | |
return path, im_emb | |
####################### | |
def get_user_emb(embs, ys): | |
# handle case where every instance of calibration videos is 'Neither' or 'Like' or 'Dislike' | |
if len(list(set(ys))) <= 1: | |
embs.append(.01*torch.randn(1280)) | |
embs.append(.01*torch.randn(1280)) | |
ys.append(0) | |
ys.append(1) | |
indices = list(range(len(embs))) | |
# sample only as many negatives as there are positives | |
pos_indices = [i for i in indices if ys[i] == 1] | |
neg_indices = [i for i in indices if ys[i] == 0] | |
#lower = min(len(pos_indices), len(neg_indices)) | |
#neg_indices = random.sample(neg_indices, lower) | |
#pos_indices = random.sample(pos_indices, lower) | |
# we may have just encountered a rare multi-threading diffusers issue (https://github.com/huggingface/diffusers/issues/5749); | |
# this ends up adding a rating but losing an embedding, it seems. | |
# let's take off a rating if so to continue without indexing errors. | |
if len(ys) > len(embs): | |
ys.pop(-1) | |
feature_embs = np.array(torch.stack([embs[i].squeeze().to('cpu') for i in indices]).to('cpu')) | |
#scaler = preprocessing.StandardScaler().fit(feature_embs) | |
#feature_embs = scaler.transform(feature_embs) | |
chosen_y = np.array([ys[i] for i in indices]) | |
#lin_class = Ridge(fit_intercept=False).fit(feature_embs, chosen_y) | |
lin_class = SVC(max_iter=20, kernel='linear', C=.1, class_weight='balanced').fit(feature_embs, chosen_y) | |
coef_ = torch.tensor(lin_class.coef_, dtype=torch.double).detach().to('cpu') | |
coef_ = coef_ / coef_.abs().max() * 3 | |
w = 1# if len(embs) % 2 == 0 else 0 | |
im_emb = w * coef_.to(dtype=dtype) | |
return im_emb | |
def pluck_img(user_id, user_emb): | |
not_rated_rows = prevs_df[[i[1]['user:rating'].get(user_id, 'gone') == 'gone' for i in prevs_df.iterrows()]] | |
while len(not_rated_rows) == 0: | |
not_rated_rows = prevs_df[[i[1]['user:rating'].get(user_id, 'gone') == 'gone' for i in prevs_df.iterrows()]] | |
time.sleep(.001) | |
# TODO optimize this lol | |
best_sim = -100000 | |
for i in not_rated_rows.iterrows(): | |
# TODO sloppy .to but it is 3am. | |
sim = torch.cosine_similarity(i[1]['embeddings'].detach().to('cpu'), user_emb.detach().to('cpu')) | |
if sim > best_sim: | |
best_sim = sim | |
best_row = i[1] | |
img = best_row['paths'] | |
return img | |
def background_next_image(): | |
global prevs_df | |
# only let it get N (maybe 3) ahead of the user | |
#not_rated_rows = prevs_df[[i[1]['user:rating'] == {' ': ' '} for i in prevs_df.iterrows()]] | |
rated_rows = prevs_df[[i[1]['user:rating'] != {' ': ' '} for i in prevs_df.iterrows()]] | |
while len(rated_rows) < 4: | |
# not_rated_rows = prevs_df[[i[1]['user:rating'] == {' ': ' '} for i in prevs_df.iterrows()]] | |
rated_rows = prevs_df[[i[1]['user:rating'] != {' ': ' '} for i in prevs_df.iterrows()]] | |
time.sleep(.01) | |
user_id_list = set(rated_rows['latest_user_to_rate'].to_list()) | |
for uid in user_id_list: | |
rated_rows = prevs_df[[i[1]['user:rating'].get(uid, None) is not None for i in prevs_df.iterrows()]] | |
not_rated_rows = prevs_df[[i[1]['user:rating'].get(uid, None) is None for i in prevs_df.iterrows()]] | |
# we need to intersect not_rated_rows from this user's embed > 7. Just add a new column on which user_id spawned the | |
# media. | |
unrated_from_user = not_rated_rows[[i[1]['from_user_id'] == uid for i in not_rated_rows.iterrows()]] | |
rated_from_user = rated_rows[[i[1]['from_user_id'] == uid for i in rated_rows.iterrows()]] | |
# we pop previous ratings if there are > 10 | |
if len(rated_from_user) >= 10: | |
oldest = rated_from_user.iloc[0]['paths'] | |
prevs_df = prevs_df[prevs_df['paths'] != oldest] | |
# we don't compute more after 10 are in the queue for them | |
if len(unrated_from_user) >= 10: | |
continue | |
if len(rated_rows) < 4: | |
continue | |
embs, ys = pluck_embs_ys(uid) | |
user_emb = get_user_emb(embs, ys) | |
img, embs = generate(user_emb) | |
if img: | |
tmp_df = pd.DataFrame(columns=['paths', 'embeddings', 'ips', 'user:rating', 'latest_user_to_rate']) | |
tmp_df['paths'] = [img] | |
tmp_df['embeddings'] = [embs] | |
tmp_df['user:rating'] = [{' ': ' '}] | |
tmp_df['from_user_id'] = [uid] | |
prevs_df = pd.concat((prevs_df, tmp_df)) | |
# we can free up storage by deleting the image | |
if len(prevs_df) > 30: | |
cands = prevs_df.iloc[6:] | |
cands['sum_bad_ratings'] = [sum([int(t==0) for t in i.values()]) for i in cands['user:rating']] | |
worst_row = cands.loc[cands['sum_bad_ratings']==cands['sum_bad_ratings'].max()].iloc[0] | |
worst_path = worst_row['paths'] | |
if os.path.isfile(worst_path): | |
os.remove(worst_path) | |
# only keep x images & embeddings & ips, then remove the most often disliked besides calibrating | |
prevs_df = prevs_df[prevs_df['paths'] != worst_path] | |
def pluck_embs_ys(user_id): | |
rated_rows = prevs_df[[i[1]['user:rating'].get(user_id, None) != None for i in prevs_df.iterrows()]] | |
#not_rated_rows = prevs_df[[i[1]['user:rating'].get(user_id, None) == None for i in prevs_df.iterrows()]] | |
#while len(not_rated_rows) == 0: | |
# not_rated_rows = prevs_df[[i[1]['user:rating'].get(user_id, None) == None for i in prevs_df.iterrows()]] | |
# rated_rows = prevs_df[[i[1]['user:rating'].get(user_id, None) != None for i in prevs_df.iterrows()]] | |
# time.sleep(.01) | |
# print('current user has 0 not_rated_rows') | |
embs = rated_rows['embeddings'].to_list() | |
ys = [i[user_id] for i in rated_rows['user:rating'].to_list()] | |
return embs, ys | |
def next_image(calibrate_prompts, user_id): | |
with torch.no_grad(): | |
if len(calibrate_prompts) > 0: | |
cal_video = calibrate_prompts.pop(0) | |
image = prevs_df[prevs_df['paths'] == cal_video]['paths'].to_list()[0] | |
return image, calibrate_prompts | |
else: | |
embs, ys = pluck_embs_ys(user_id) | |
user_emb = get_user_emb(embs, ys) | |
image = pluck_img(user_id, user_emb) | |
return image, calibrate_prompts | |
def start(_, calibrate_prompts, user_id, request: gr.Request): | |
user_id = int(str(time.time())[-7:].replace('.', '')) | |
image, calibrate_prompts = next_image(calibrate_prompts, user_id) | |
return [ | |
gr.Button(value='Like (L)', interactive=True), | |
gr.Button(value='Neither (Space)', interactive=True, visible=False), | |
gr.Button(value='Dislike (A)', interactive=True), | |
gr.Button(value='Start', interactive=False), | |
image, | |
calibrate_prompts, | |
user_id | |
] | |
def choose(img, choice, calibrate_prompts, user_id, request: gr.Request): | |
global prevs_df | |
if choice == 'Like (L)': | |
choice = 1 | |
elif choice == 'Neither (Space)': | |
img, calibrate_prompts = next_image(calibrate_prompts, user_id) | |
return img, calibrate_prompts | |
else: | |
choice = 0 | |
# if we detected NSFW, leave that area of latent space regardless of how they rated chosen. | |
# TODO skip allowing rating & just continue | |
if img == None: | |
choice = 0 | |
row_mask = [p.split('/')[-1] in img for p in prevs_df['paths'].to_list()] | |
# if it's still in the dataframe, add the choice | |
if len(prevs_df.loc[row_mask, 'user:rating']) > 0: | |
prevs_df.loc[row_mask, 'user:rating'][0][user_id] = choice | |
prevs_df.loc[row_mask, 'latest_user_to_rate'] = [user_id] | |
img, calibrate_prompts = next_image(calibrate_prompts, user_id) | |
return img, calibrate_prompts | |
css = '''.gradio-container{max-width: 700px !important} | |
#description{text-align: center} | |
#description h1, #description h3{display: block} | |
#description p{margin-top: 0} | |
.fade-in-out {animation: fadeInOut 3s forwards} | |
@keyframes fadeInOut { | |
0% { | |
background: var(--bg-color); | |
} | |
100% { | |
background: var(--button-secondary-background-fill); | |
} | |
} | |
''' | |
js_head = ''' | |
<script> | |
document.addEventListener('keydown', function(event) { | |
if (event.key === 'a' || event.key === 'A') { | |
// Trigger click on 'dislike' if 'A' is pressed | |
document.getElementById('dislike').click(); | |
} else if (event.key === ' ' || event.keyCode === 32) { | |
// Trigger click on 'neither' if Spacebar is pressed | |
document.getElementById('neither').click(); | |
} else if (event.key === 'l' || event.key === 'L') { | |
// Trigger click on 'like' if 'L' is pressed | |
document.getElementById('like').click(); | |
} | |
}); | |
function fadeInOut(button, color) { | |
button.style.setProperty('--bg-color', color); | |
button.classList.remove('fade-in-out'); | |
void button.offsetWidth; // This line forces a repaint by accessing a DOM property | |
button.classList.add('fade-in-out'); | |
button.addEventListener('animationend', () => { | |
button.classList.remove('fade-in-out'); // Reset the animation state | |
}, {once: true}); | |
} | |
document.body.addEventListener('click', function(event) { | |
const target = event.target; | |
if (target.id === 'dislike') { | |
fadeInOut(target, '#ff1717'); | |
} else if (target.id === 'like') { | |
fadeInOut(target, '#006500'); | |
} else if (target.id === 'neither') { | |
fadeInOut(target, '#cccccc'); | |
} | |
}); | |
</script> | |
''' | |
with gr.Blocks(css=css, head=js_head) as demo: | |
gr.Markdown('''# Blue Tigers | |
### Generative Recommenders for Exporation of Video | |
Explore the latent space without text prompts based on your preferences. Learn more on [the write-up](https://rynmurdock.github.io/posts/2024/3/generative_recomenders/). | |
''', elem_id="description") | |
user_id = gr.State() | |
# calibration videos -- this is a misnomer now :D | |
calibrate_prompts = gr.State([ | |
'./first.mp4', | |
'./second.mp4', | |
'./third.mp4', | |
'./fourth.mp4', | |
'./fifth.mp4', | |
'./sixth.mp4', | |
]) | |
def l(): | |
return None | |
with gr.Row(elem_id='output-image'): | |
img = gr.Video( | |
label='Lightning', | |
autoplay=True, | |
interactive=False, | |
height=512, | |
width=512, | |
#include_audio=False, | |
elem_id="video_output" | |
) | |
img.play(l, js='''document.querySelector('[data-testid="Lightning-player"]').loop = true''') | |
with gr.Row(equal_height=True): | |
b3 = gr.Button(value='Dislike (A)', interactive=False, elem_id="dislike") | |
b2 = gr.Button(value='Neither (Space)', interactive=False, elem_id="neither", visible=False) | |
b1 = gr.Button(value='Like (L)', interactive=False, elem_id="like") | |
b1.click( | |
choose, | |
[img, b1, calibrate_prompts, user_id], | |
[img, calibrate_prompts], | |
) | |
b2.click( | |
choose, | |
[img, b2, calibrate_prompts, user_id], | |
[img, calibrate_prompts], | |
) | |
b3.click( | |
choose, | |
[img, b3, calibrate_prompts, user_id], | |
[img, calibrate_prompts], | |
) | |
with gr.Row(): | |
b4 = gr.Button(value='Start') | |
b4.click(start, | |
[b4, calibrate_prompts, user_id], | |
[b1, b2, b3, b4, img, calibrate_prompts, user_id] | |
) | |
with gr.Row(): | |
html = gr.HTML('''<div style='text-align:center; font-size:20px'>You will calibrate for several videos and then roam. </ div><br><br><br> | |
<div style='text-align:center; font-size:14px'>Note that while the AnimateLCM model with NSFW filtering is unlikely to produce NSFW images, this may still occur, and users should avoid NSFW content when rating. | |
</ div> | |
<br><br> | |
<div style='text-align:center; font-size:14px'>Thanks to @multimodalart for their contributions to the demo, esp. the interface and @maxbittker for feedback. | |
</ div>''') | |
# TODO quiet logging | |
log = logging.getLogger('log_here') | |
log.setLevel(logging.ERROR) | |
scheduler = BackgroundScheduler() | |
scheduler.add_job(func=background_next_image, trigger="interval", seconds=.3) | |
scheduler.start() | |
#thread = threading.Thread(target=background_next_image,) | |
#thread.start() | |
def encode_space(x): | |
im_emb, _ = pipe.encode_image( | |
image, DEVICE, 1, output_hidden_state | |
) | |
return im_emb.detach().to('cpu').to(torch.float32) | |
# prep our calibration prompts | |
for im in [ | |
'./first.mp4', | |
'./second.mp4', | |
'./third.mp4', | |
'./fourth.mp4', | |
'./fifth.mp4', | |
'./sixth.mp4', | |
]: | |
tmp_df = pd.DataFrame(columns=['paths', 'embeddings', 'ips', 'user:rating']) | |
tmp_df['paths'] = [im] | |
image = list(imageio.imiter(im)) | |
image = image[len(image)//2] | |
im_emb = encode_space(image) | |
tmp_df['embeddings'] = [im_emb.detach().to('cpu')] | |
tmp_df['user:rating'] = [{' ': ' '}] | |
prevs_df = pd.concat((prevs_df, tmp_df)) | |
demo.launch(share=True) | |