File size: 15,127 Bytes
6f68207
f360117
 
 
 
 
 
 
05e29c3
447c576
 
 
05e29c3
 
f360117
 
 
05e29c3
 
93f11bd
 
 
 
a22a221
f360117
6f68207
db551d5
 
 
5c43323
 
f360117
 
 
 
 
447c576
05e29c3
447c576
db551d5
 
385fb5f
 
6f68207
385fb5f
 
6f68207
 
 
05e29c3
6f68207
db551d5
 
05e29c3
385fb5f
0186388
05e29c3
 
 
 
59f9d35
b41bb43
05e29c3
6f68207
db551d5
b1772c8
447c576
 
0186388
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
05e29c3
0186388
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
05e29c3
0186388
 
05e29c3
 
0186388
 
 
 
 
 
 
 
05e29c3
0186388
 
 
05e29c3
 
447c576
 
 
178e606
447c576
 
 
 
385fb5f
6f68207
385fb5f
6f68207
 
385fb5f
 
6f68207
 
 
 
 
05e29c3
6f68207
 
 
 
 
 
 
 
 
05e29c3
447c576
 
385fb5f
447c576
5c43323
 
 
 
 
385fb5f
0186388
 
 
f2cdd37
 
 
0186388
 
 
 
f2cdd37
0186388
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f2cdd37
0186388
 
f2cdd37
0186388
 
 
 
 
 
447c576
 
 
e35bd8b
0186388
f360117
 
c9cc7c2
 
2990438
 
 
225ad9c
 
0186388
 
2990438
 
 
f360117
 
 
 
 
447c576
0186388
 
 
 
f360117
 
 
0186388
f360117
7ac7da9
0186388
32bd2b2
0186388
 
 
f360117
0186388
 
 
 
 
 
5c43323
 
 
 
0186388
f360117
 
 
 
 
 
 
 
 
0186388
 
f360117
db551d5
 
 
f360117
04f075c
6c62bb5
0186388
6c62bb5
7dcdfac
f360117
 
 
5c43323
b1772c8
f360117
b1772c8
f360117
19701ae
0186388
 
f360117
 
5c43323
 
 
 
 
 
f360117
0186388
 
f360117
db551d5
 
1146833
db551d5
ecec1ba
 
 
 
 
 
 
 
 
db551d5
ecec1ba
db551d5
 
 
 
 
 
 
 
 
 
 
 
 
ecec1ba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
db551d5
 
 
ecec1ba
6ef75ad
bfd5a13
db551d5
00de940
0186388
00de940
7dcdfac
0186388
 
 
 
 
 
7dcdfac
 
f360117
0186388
f360117
db551d5
 
 
f360117
 
5c43323
0186388
f360117
 
 
5c43323
0186388
f360117
 
 
5c43323
0186388
f360117
 
eeadab2
f360117
0186388
 
a57acc8
c7b36a6
 
 
f360117
0186388
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
DEVICE = 'cuda'

import gradio as gr
import numpy as np
from sklearn.svm import LinearSVC
from sklearn import preprocessing
import pandas as pd

from diffusers import LCMScheduler, AutoencoderTiny, EulerDiscreteScheduler, UNet2DConditionModel, AutoPipelineForText2Image, DiffusionPipeline
from diffusers.models import ImageProjection
import torch

torch.set_float32_matmul_precision('high')

import random
import time

# TODO put back
import spaces
from urllib.request import urlopen

from PIL import Image
import requests
from io import BytesIO, StringIO

from transformers import CLIPVisionModelWithProjection
from huggingface_hub import hf_hub_download
from safetensors.torch import load_file

from safety_checker_improved import maybe_nsfw

prompt_list = [p for p in list(set(
                pd.read_csv('./twitter_prompts.csv').iloc[:, 1].tolist())) if type(p) == str]

start_time = time.time()

####################### Setup Model

model_id = "stabilityai/stable-diffusion-xl-base-1.0"
sdxl_lightening = "ByteDance/SDXL-Lightning"
ckpt = "sdxl_lightning_2step_unet.safetensors"
unet = UNet2DConditionModel.from_config(model_id, subfolder="unet").to(DEVICE, torch.float16)
unet.load_state_dict(load_file(hf_hub_download(sdxl_lightening, ckpt), device=DEVICE))

image_encoder = CLIPVisionModelWithProjection.from_pretrained("h94/IP-Adapter",  subfolder="models/image_encoder", torch_dtype=torch.float16,).to(DEVICE)
pipe = AutoPipelineForText2Image.from_pretrained(model_id, unet=unet, torch_dtype=torch.float16, variant="fp16", image_encoder=image_encoder).to(DEVICE)
pipe.unet._load_ip_adapter_weights(torch.load(hf_hub_download('h94/IP-Adapter', 'sdxl_models/ip-adapter_sdxl_vit-h.bin')))
pipe.load_ip_adapter("h94/IP-Adapter", subfolder="sdxl_models", weight_name="ip-adapter_sdxl_vit-h.bin")
pipe.register_modules(image_encoder = image_encoder)
pipe.set_ip_adapter_scale(0.8)

pipe.vae = AutoencoderTiny.from_pretrained("madebyollin/taesdxl", torch_dtype=torch.float16)
pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config, timestep_spacing="trailing")

pipe.to(device=DEVICE)


# TODO put back
@spaces.GPU
def compile_em():
    pipe.unet = torch.compile(pipe.unet)
    pipe.vae = torch.compile(pipe.vae, mode='reduce-overhead')
    autoencoder.model.forward = torch.compile(autoencoder.model.forward, backend='inductor', dynamic=True)


output_hidden_state = False
#######################

####################### Setup autoencoder

from tqdm import tqdm
from transformers import AutoTokenizer, AutoModelForCausalLM

class BottleneckT5Autoencoder:
    def __init__(self, model_path: str, device='cuda'):
        self.device = device
        self.tokenizer = AutoTokenizer.from_pretrained(model_path, model_max_length=512, torch_dtype=torch.bfloat16)
        self.model = AutoModelForCausalLM.from_pretrained(model_path, trust_remote_code=True).to(self.device)
        self.model.eval()


    def embed(self, text: str) -> torch.FloatTensor:
        inputs = self.tokenizer(text, return_tensors='pt', padding=True).to(self.device)
        decoder_inputs = self.tokenizer('', return_tensors='pt').to(self.device)
        return self.model(
            **inputs,
            decoder_input_ids=decoder_inputs['input_ids'],
            encode_only=True,
        )

    def generate_from_latent(self, latent: torch.FloatTensor, max_length=512, temperature=1., top_p=.8, min_new_tokens=30) -> str:
        dummy_text = '.'
        dummy = self.embed(dummy_text)
        perturb_vector = latent - dummy
        self.model.perturb_vector = perturb_vector
        input_ids = self.tokenizer(dummy_text, return_tensors='pt').to(self.device).input_ids
        output = self.model.generate(
            input_ids=input_ids,
            max_length=max_length,
            do_sample=True,
            temperature=temperature,
            top_p=top_p,
            num_return_sequences=1,
            min_new_tokens=min_new_tokens,
            # num_beams=8,
        )
        return self.tokenizer.decode(output[0], skip_special_tokens=True)

autoencoder = BottleneckT5Autoencoder(model_path='thesephist/contra-bottleneck-t5-xl-wikipedia')

compile_em()
#######################

# TODO put back
@spaces.GPU
def generate(prompt, in_embs=None,):
  if prompt != '':
    print(prompt)
    in_embs = in_embs / in_embs.abs().max() * .15 if in_embs != None else None
    in_embs = .9 * in_embs.to('cuda') + .5 * autoencoder.embed(prompt).to('cuda') if in_embs != None else autoencoder.embed(prompt).to('cuda')
  else:
    print('From embeds.')
  in_embs = in_embs / in_embs.abs().max() * .15
  text = autoencoder.generate_from_latent(in_embs.to('cuda').to(dtype=torch.bfloat16), temperature=.8, top_p=.94, min_new_tokens=5)
  return text, in_embs.to('cpu')


# TODO put back
@spaces.GPU
def predict(
        prompt,
        im_emb=None,
        progress=gr.Progress(track_tqdm=True)
    ):
    """Run a single prediction on the model"""
    with torch.no_grad():
        if im_emb == None:
            im_emb = torch.zeros(1, 1024, dtype=torch.float16, device=DEVICE)
            
        im_emb = [im_emb.to(DEVICE).unsqueeze(0)]
        if prompt == '':
            image = pipe(
                prompt_embeds=torch.zeros(1, 1, 2048, dtype=torch.float16, device=DEVICE),
                pooled_prompt_embeds=torch.zeros(1, 1280, dtype=torch.float16, device=DEVICE),
                ip_adapter_image_embeds=im_emb,
                height=1024,
                width=1024,                                                                                                             
                num_inference_steps=2,
                guidance_scale=0,
#                timesteps=[800],
            ).images[0]
        else:
            image = pipe(
                prompt=prompt,
                ip_adapter_image_embeds=im_emb,
                height=1024,
                width=1024,                                                                                                             
                num_inference_steps=2,
                guidance_scale=0,
#                timesteps=[800],
            ).images[0]
        im_emb, _ = pipe.encode_image(
                image, DEVICE, 1, output_hidden_state
            )
        
        nsfw = maybe_nsfw(image)
        if nsfw:
            return None, im_emb.to('cpu')
        
        return image, im_emb.to('cpu')
        
        
# sample a .8 of rated embeddings for some stochasticity, or at least two embeddings.
def get_coeff(embs_local, ys):
    n_to_choose = max(int(len(embs_local)*.8), 2)
    indices = random.sample(range(len(embs_local)), n_to_choose)

    # we may have just encountered a rare multi-threading diffusers issue (https://github.com/huggingface/diffusers/issues/5749);
    # this ends up adding a rating but losing an embedding, it seems.
    # let's take off a rating if so to continue without indexing errors.
    if len(ys) > len(embs_local):
        print('ys are longer than embs; popping latest rating')
        ys.pop(-1)
    
    # also add the latest 0 and the latest 1
    has_0 = False
    has_1 = False
    for i in reversed(range(len(ys))):
        if ys[i] == 0 and has_0 == False:
            indices.append(i)
            has_0 = True
        elif ys[i] == 1 and has_1 == False:
            indices.append(i)
            has_1 = True
        if has_0 and has_1:
            break
    
    feature_embs = np.array(torch.cat([embs_local[i].to('cpu') for i in indices]).to('cpu'))
    scaler = preprocessing.StandardScaler().fit(feature_embs)
    feature_embs = scaler.transform(feature_embs)
    print(len(feature_embs), len(ys))
    
    lin_class = LinearSVC(max_iter=50000, dual='auto', class_weight='balanced').fit(feature_embs, np.array([ys[i] for i in indices]))
    lin_class.coef_ = torch.tensor(lin_class.coef_, dtype=torch.double)
    lin_class.coef_ = (lin_class.coef_.flatten() / (lin_class.coef_.flatten().norm())).unsqueeze(0)
    
    return lin_class.coef_

# TODO add to state instead of shared across all
glob_idx = 0

def next_image(embs, img_embs, ys, calibrate_prompts):
    global glob_idx
    glob_idx = glob_idx + 1
    if glob_idx >= 12:
        glob_idx = 0

    # handle case where every instance of calibration prompts is 'Neither' or 'Like' or 'Dislike'
    if len(calibrate_prompts) == 0 and len(list(set(ys))) <= 1:
        embs.append(.01*torch.randn(1, 2048))
        embs.append(.01*torch.randn(1, 2048))
        img_embs.append(.01*torch.randn(1, 1024))
        img_embs.append(.01*torch.randn(1, 1024))
        ys.append(0)
        ys.append(1)
        
    with torch.no_grad():
        if len(calibrate_prompts) > 0:
            print('######### Calibrating with sample prompts #########')
            prompt = calibrate_prompts.pop(0)
            print(prompt)
            image, img_emb = predict(prompt)
            im_emb = autoencoder.embed(prompt)
            embs.append(im_emb)
            img_embs.append(img_emb)
            return image, embs, img_embs, ys, calibrate_prompts
        else:
            print('######### Roaming #########')

            im_s = get_coeff(embs, ys)
            rng_prompt = random.choice(prompt_list)
            w = 1.4# if len(embs) % 2 == 0 else 0
            
            prompt= '' if not glob_idx % 3 == 0 else rng_prompt
            prompt, _ = generate(prompt, in_embs=im_s)
            print(prompt)
            im_emb = autoencoder.embed(prompt)
            embs.append(im_emb)
            
            learn_emb = get_coeff(img_embs, ys)
            img_emb = w * learn_emb.to(dtype=torch.float16)
            image, img_emb = predict(prompt, im_emb=img_emb)
            img_embs.append(img_emb)

            if len(embs) > 100:
                embs.pop(0)
                img_embs.pop(0)
                ys.pop(0)
            return image, embs, img_embs, ys, calibrate_prompts









def start(_, embs, img_embs, ys, calibrate_prompts):
    image, embs, img_embs, ys, calibrate_prompts = next_image(embs, img_embs, ys, calibrate_prompts)
    return [
            gr.Button(value='Like (L)', interactive=True), 
            gr.Button(value='Neither (Space)', interactive=True), 
            gr.Button(value='Dislike (A)', interactive=True),
            gr.Button(value='Start', interactive=False),
            image,
            embs,
            img_embs,
            ys,
            calibrate_prompts
            ]


def choose(img, choice, embs, img_embs, ys, calibrate_prompts):
    if choice == 'Like (L)':
        choice = 1
    elif choice == 'Neither (Space)':
        _ = embs.pop(-1)
        _ = img_embs.pop(-1)
        img, embs, img_embs, ys, calibrate_prompts = next_image(embs, img_embs, ys, calibrate_prompts)
        return img, embs, img_embs, ys, calibrate_prompts
    else:
        choice = 0
    
    print(img, 'img')
    if img is None:
        print('NSFW -- choice is disliked')
        choice = 0
        
    ys.append(choice)
    img, embs, img_embs, ys, calibrate_prompts = next_image(embs, img_embs, ys, calibrate_prompts)
    return img, embs, img_embs, ys, calibrate_prompts

css = '''.gradio-container{max-width: 700px !important}
#description{text-align: center}
#description h1, #description h3{display: block}
#description p{margin-top: 0}
.fade-in-out {animation: fadeInOut 3s forwards}
@keyframes fadeInOut {
    0% {
      background: var(--bg-color);
    }
    100% {
      background: var(--button-secondary-background-fill);
    }
}
'''
js_head = '''
<script>
document.addEventListener('keydown', function(event) {
    if (event.key === 'a' || event.key === 'A') {
        // Trigger click on 'dislike' if 'A' is pressed
        document.getElementById('dislike').click();
    } else if (event.key === ' ' || event.keyCode === 32) {
        // Trigger click on 'neither' if Spacebar is pressed
        document.getElementById('neither').click();
    } else if (event.key === 'l' || event.key === 'L') {
        // Trigger click on 'like' if 'L' is pressed
        document.getElementById('like').click();
    }
});
function fadeInOut(button, color) {
  button.style.setProperty('--bg-color', color);
  button.classList.remove('fade-in-out');
  void button.offsetWidth; // This line forces a repaint by accessing a DOM property
  
  button.classList.add('fade-in-out');
  button.addEventListener('animationend', () => {
    button.classList.remove('fade-in-out'); // Reset the animation state
  }, {once: true});
}
document.body.addEventListener('click', function(event) {
    const target = event.target;
    if (target.id === 'dislike') {
      fadeInOut(target, '#ff1717');
    } else if (target.id === 'like') {
      fadeInOut(target, '#006500');
    } else if (target.id === 'neither') {
      fadeInOut(target, '#cccccc');
    }
});
</script>
'''

with gr.Blocks(css=css, head=js_head) as demo:
    gr.Markdown('''### Zahir: Generative Recommenders for Unprompted, Scalable Exploration
    Explore the latent space without prompting based on your feedback. Learn more on [the write-up](https://rynmurdock.github.io/posts/2024/3/generative_recomenders/).
    ''', elem_id="description")
    embs = gr.State([])
    img_embs = gr.State([])
    ys = gr.State([])
    calibrate_prompts = gr.State([
    'the moon is melting into my glass of tea',
    'a sea slug -- pair of claws scuttling -- jelly fish glowing',
    'an adorable creature. It may be a goblin or a pig or a slug.',
    'an animation about a gorgeous nebula',
    'a sketch of an impressive mountain by da vinci',
    'a watercolor painting: the octopus writhes',
    ])

    with gr.Row(elem_id='output-image'):
        img = gr.Image(interactive=False, elem_id='output-image', width=700)
    with gr.Row(equal_height=True):
        b3 = gr.Button(value='Dislike (A)', interactive=False, elem_id="dislike")
        b2 = gr.Button(value='Neither (Space)', interactive=False, elem_id="neither")
        b1 = gr.Button(value='Like (L)', interactive=False, elem_id="like")
        b1.click(
        choose, 
        [img, b1, embs, img_embs, ys, calibrate_prompts],
        [img, embs, img_embs, ys, calibrate_prompts]
        )
        b2.click(
        choose, 
        [img, b2, embs, img_embs, ys, calibrate_prompts],
        [img, embs, img_embs, ys, calibrate_prompts]
        )
        b3.click(
        choose, 
        [img, b3, embs, img_embs, ys, calibrate_prompts],
        [img, embs, img_embs, ys, calibrate_prompts]
        )
    with gr.Row():
        b4 = gr.Button(value='Start')
        b4.click(start,
                 [b4, embs, img_embs, ys, calibrate_prompts],
                 [b1, b2, b3, b4, img, embs, img_embs, ys, calibrate_prompts])
    with gr.Row():
        html = gr.HTML('''<div style='text-align:center; font-size:20px'>You will calibrate for several prompts and then roam. </ div><br><br><br>
<div style='text-align:center; font-size:14px'>Note that while the SDXL model is unlikely to produce NSFW images, it still may be possible, and users should avoid NSFW content when rating.
</ div>''')

demo.launch(share=True)  # Share your demo with just 1 extra parameter 🚀