import streamlit as lit
import torch
from transformers import BartForConditionalGeneration, PreTrainedTokenizerFast
@lit.cache(allow_output_mutation = True)
def loadModels():
repository = "rycont/biblify"
_model = BartForConditionalGeneration.from_pretrained(repository)
_tokenizer = PreTrainedTokenizerFast.from_pretrained(repository)
print("Loaded :)")
return _model, _tokenizer
lit.title("성경말투 생성기")
lit.caption("한 문장을 가장 잘 변환합니다. 제대로 동작하지 않다면 아래 링크로 이동해주세요")
lit.caption("https://main-biblify-space-rycont.endpoint.ainize.ai/")
loadModels()
MAX_LENGTH = 128
def biblifyWithBeams(beam, tokens, attention_mask):
generated = model.generate(
input_ids = torch.Tensor([ tokens ]).to(torch.int64),
attention_mask = torch.Tensor([ attentionMasks ]).to(torch.int64),
num_beams = beam,
max_length = MAX_LENGTH,
eos_token_id=tokenizer.eos_token_id,
bad_words_ids=[[tokenizer.unk_token_id]]
)[0]
return tokenizer.decode(
generated,
).replace('', '').replace('', '')
with lit.form("gen"):
text_input = lit.text_input("문장 입력")
submitted = lit.form_submit_button("생성")
if len(text_input.strip()) > 0:
print(text_input)
text_input = "" + text_input + ""
tokens = tokenizer.encode(text_input)
tokenLength = len(tokens)
attentionMasks = [ 1 ] * tokenLength + [ 0 ] * (MAX_LENGTH - tokenLength)
tokens = tokens + [ tokenizer.pad_token_id ] * (MAX_LENGTH - tokenLength)
results = []
for i in range(10)[5:]:
generated = biblifyWithBeams(
i + 1,
tokens,
attentionMasks
)
if generated in results:
print("중복됨")
continue
results.append(generated)
with lit.expander(str(len(results)) + "번째 결과 (" + str(i +1) + ")", True):
lit.write(generated)
print(generated)
lit.caption("및 " + str(5 - len(results)) + " 개의 중복된 결과")