#https://medium.com/thedeephub/rag-chatbot-powered-by-langchain-openai-google-generative-ai-and-hugging-face-apis-6a9b9d7d59db #https://github.com/AlaGrine/RAG_chatabot_with_Langchain/blob/main/RAG_notebook.ipynb from langchain_community.document_loaders import ( PyPDFLoader, TextLoader, DirectoryLoader, CSVLoader, UnstructuredExcelLoader, Docx2txtLoader, ) from langchain.text_splitter import RecursiveCharacterTextSplitter, CharacterTextSplitter import tiktoken import gradio as gr import csv import os, tempfile, glob, random from pathlib import Path #from IPython.display import Markdown from PIL import Image from getpass import getpass import numpy as np from itertools import combinations import pypdf import requests # LLM: openai and google_genai import openai from langchain_openai import OpenAI, OpenAIEmbeddings, ChatOpenAI from langchain_google_genai import ChatGoogleGenerativeAI from langchain_google_genai import GoogleGenerativeAIEmbeddings # LLM: HuggingFace from langchain_community.embeddings import HuggingFaceInferenceAPIEmbeddings from langchain_community.llms import HuggingFaceHub # langchain prompts, memory, chains... from langchain.prompts import PromptTemplate, ChatPromptTemplate from langchain.chains import ConversationalRetrievalChain from langchain_community.chat_message_histories import StreamlitChatMessageHistory from operator import itemgetter from langchain_core.runnables import RunnableLambda, RunnableParallel, RunnablePassthrough from langchain.schema import Document, format_document from langchain_core.messages import AIMessage, HumanMessage, get_buffer_string from langchain_google_genai import ( ChatGoogleGenerativeAI, HarmBlockThreshold, HarmCategory, ) # OutputParser from langchain_core.output_parsers import StrOutputParser # Chroma: vectorstore from langchain_community.vectorstores import Chroma # Contextual Compression from langchain.retrievers.document_compressors import DocumentCompressorPipeline from langchain.text_splitter import CharacterTextSplitter from langchain_community.document_transformers import EmbeddingsRedundantFilter,LongContextReorder from langchain.retrievers.document_compressors import EmbeddingsFilter from langchain.retrievers import ContextualCompressionRetriever from langchain.retrievers import ContextualCompressionRetriever from langchain.retrievers.document_compressors import CohereRerank from langchain_community.llms import Cohere from langchain.memory import ConversationSummaryBufferMemory,ConversationBufferMemory from langchain.schema import Document # Cohere (not currently in use) from langchain.retrievers.document_compressors import CohereRerank from langchain_community.llms import Cohere # Get API keys openai_api_key = os.environ['openai_key'] google_api_key = os.environ['gemini_key'] HF_key = os.environ['HF_token'] cohere_api_key = os.environ['cohere_api'] current_dir = os.getcwd() # Not currently in use prompt_templates = {"All Needs Experts": "Respond as if you are combination of all needs assessment experts."} actor_description = {"All Needs Experts": "
A combination of all needs assessment experts."} # Initiates the UI features def get_empty_state(): return { "messages": []} def download_prompt_templates(): url = "https://huggingface.co/spaces/ryanrwatkins/needs/raw/main/gurus.txt" try: response = requests.get(url) reader = csv.reader(response.text.splitlines()) next(reader) # skip the header row for row in reader: if len(row) >= 2: act = row[0].strip('"') prompt = row[1].strip('"') description = row[2].strip('"') prompt_templates[act] = prompt actor_description[act] = description except requests.exceptions.RequestException as e: print(f"An error occurred while downloading prompt templates: {e}") return choices = list(prompt_templates.keys()) choices = choices[:1] + sorted(choices[1:]) return gr.update(value=choices[0], choices=choices) def on_prompt_template_change(prompt_template): if not isinstance(prompt_template, str): return return prompt_templates[prompt_template] def on_prompt_template_change_description(prompt_template): if not isinstance(prompt_template, str): return return actor_description[prompt_template] # set to load only PDF, but could change to set to specific directory, so that other files don't get embeddings def langchain_document_loader(): """ Load documents from the temporary directory (TMP_DIR). Files can be in txt, pdf, CSV or docx format. """ #current_dir = os.getcwd() #TMP_DIR = current_dir global documents documents = [] """ txt_loader = DirectoryLoader( TMP_DIR.as_posix(), glob="**/*.txt", loader_cls=TextLoader, show_progress=True ) documents.extend(txt_loader.load()) """ pdf_loader = DirectoryLoader( current_dir, glob="*.pdf", loader_cls=PyPDFLoader, show_progress=True ) documents.extend(pdf_loader.load()) """ csv_loader = DirectoryLoader( TMP_DIR.as_posix(), glob="**/*.csv", loader_cls=CSVLoader, show_progress=True, loader_kwargs={"encoding":"utf8"} ) documents.extend(csv_loader.load()) doc_loader = DirectoryLoader( #TMP_DIR.as_posix(), current_dir, glob="**/*.docx", loader_cls=Docx2txtLoader, show_progress=True, ) documents.extend(doc_loader.load()) """ return documents langchain_document_loader() # Text splitting of the uploaded documents, the chunks will become vectors text_splitter = RecursiveCharacterTextSplitter( separators = ["\n\n", "\n", " ", ""], chunk_size = 1500, chunk_overlap= 200 ) chunks = text_splitter.split_documents(documents=documents) # just FYI, does not impact anything it is just for information when re-starting the app def tiktoken_tokens(documents,model="gpt-3.5-turbo"): """Use tiktoken (tokeniser for OpenAI models) to return a list of token lengths per document.""" encoding = tiktoken.encoding_for_model(model) # returns the encoding used by the model. tokens_length = [len(encoding.encode(documents[i].page_content)) for i in range(len(documents))] return tokens_length chunks_length = tiktoken_tokens(chunks,model="gpt-3.5-turbo") print(f"Number of tokens - Average : {int(np.mean(chunks_length))}") print(f"Number of tokens - 25% percentile : {int(np.quantile(chunks_length,0.25))}") print(f"Number of tokens - 50% percentile : {int(np.quantile(chunks_length,0.5))}") print(f"Number of tokens - 75% percentile : {int(np.quantile(chunks_length,0.75))}") # For embeddings I am just using the free HF model so others are turned off def select_embeddings_model(LLM_service="HuggingFace"): """Connect to the embeddings API endpoint by specifying the name of the embedding model. if LLM_service == "OpenAI": embeddings = OpenAIEmbeddings( model='text-embedding-ada-002', api_key=openai_api_key) """ """ if LLM_service == "Google": embeddings = GoogleGenerativeAIEmbeddings( model="models/embedding-001", google_api_key=google_api_key, ) """ if LLM_service == "HuggingFace": embeddings = HuggingFaceInferenceAPIEmbeddings( api_key=HF_key, #model_name="thenlper/gte-large" model_name="sentence-transformers/all-MiniLM-l6-v2" ) print("embedding model selected") return embeddings #embeddings_OpenAI = select_embeddings_model(LLM_service="OpenAI") #embeddings_google = select_embeddings_model(LLM_service="Google") embeddings_HuggingFace = select_embeddings_model(LLM_service="HuggingFace") # Creates the Database that will hold the embedding vectors def create_vectorstore(embeddings,documents,vectorstore_name): """Create a Chroma vector database.""" persist_directory = (current_dir + "/" + vectorstore_name) embedding_function=embeddings vector_store = Chroma.from_documents( documents=documents, embedding=embeddings, persist_directory=persist_directory ) print("created Chroma vector database") return vector_store create_vectorstores = True # change to True to create vectorstores # Then we tell it to store the embeddings in the VectorStore (stickiong with HF for this) if create_vectorstores: """ vector_store_OpenAI,_ = create_vectorstore( embeddings=embeddings_OpenAI, documents = chunks, vectorstore_name="Vit_All_OpenAI_Embeddings", ) print("vector_store_OpenAI:",vector_store_OpenAI._collection.count(),"chunks.") """ """ vector_store_google,new_vectorstore_name = create_vectorstore( embeddings=embeddings_google, documents = chunks, vectorstore_name="Vit_All_Google_Embeddings" ) print("vector_store_google:",vector_store_google._collection.count(),"chunks.") """ vector_store_HF = create_vectorstore( embeddings=embeddings_HuggingFace, documents = chunks, vectorstore_name="Vit_All_HF_Embeddings" ) print("vector_store_HF:",vector_store_HF._collection.count(),"chunks.") print("") # Now we tell it to keep the chromadb persistent so that it can be referenced at any time """ vector_store_OpenAI = Chroma( persist_directory = LOCAL_VECTOR_STORE_DIR.as_posix() + "/Vit_All_OpenAI_Embeddings", embedding_function=embeddings_OpenAI) print("vector_store_OpenAI:",vector_store_OpenAI._collection.count(),"chunks.") """ """ vector_store_google = Chroma( persist_directory = current_dir + "/Vit_All_Google_Embeddings", embedding_function=embeddings_google) print("vector_store_google:",vector_store_google._collection.count(),"chunks.") """ vector_store_HF = Chroma( persist_directory = current_dir + "/Vit_All_HF_Embeddings", embedding_function=embeddings_HuggingFace) print("vector_store_HF:",vector_store_HF._collection.count(),"chunks.") # Now we create the code to retrieve embeddings from the vectorstore (again, sticking with HF) def Vectorstore_backed_retriever( vectorstore,search_type="similarity",k=10,score_threshold=None ): """create a vectorsore-backed retriever Parameters: search_type: Defines the type of search that the Retriever should perform. Can be "similarity" (default), "mmr", or "similarity_score_threshold" k: number of documents to return (Default: 4) score_threshold: Minimum relevance threshold for similarity_score_threshold (default=None) """ print("vector_backed retriever started") search_kwargs={} if k is not None: search_kwargs['k'] = k if score_threshold is not None: search_kwargs['score_threshold'] = score_threshold global retriever retriever = vectorstore.as_retriever( search_type=search_type, search_kwargs=search_kwargs ) print("vector_backed retriever done") return retriever # similarity search #base_retriever_OpenAI = Vectorstore_backed_retriever(vector_store_OpenAI,"similarity",k=10) #base_retriever_google = Vectorstore_backed_retriever(vector_store_google,"similarity",k=10) base_retriever_HF = Vectorstore_backed_retriever(vector_store_HF,"similarity",k=10) # This next code takes the retrieved embeddings, gets rid of redundant ones, takes out non-useful information, and provides back a shorter embedding for use def create_compression_retriever(embeddings, base_retriever, chunk_size=500, k=16, similarity_threshold=None): """Build a ContextualCompressionRetriever. We wrap the the base_retriever (a vectorstore-backed retriever) into a ContextualCompressionRetriever. The compressor here is a Document Compressor Pipeline, which splits documents into smaller chunks, removes redundant documents, filters out the most relevant documents, and reorder the documents so that the most relevant are at the top and bottom of the list. Parameters: embeddings: OpenAIEmbeddings, GoogleGenerativeAIEmbeddings or HuggingFaceInferenceAPIEmbeddings. base_retriever: a vectorstore-backed retriever. chunk_size (int): Documents will be splitted into smaller chunks using a CharacterTextSplitter with a default chunk_size of 500. k (int): top k relevant chunks to the query are filtered using the EmbeddingsFilter. default =16. similarity_threshold : minimum relevance threshold used by the EmbeddingsFilter. default =None. """ print("compression retriever started") # 1. splitting documents into smaller chunks splitter = CharacterTextSplitter(chunk_size=chunk_size, chunk_overlap=0, separator=". ") # 2. removing redundant documents redundant_filter = EmbeddingsRedundantFilter(embeddings=embeddings) # 3. filtering based on relevance to the query relevant_filter = EmbeddingsFilter(embeddings=embeddings, k=k, similarity_threshold=similarity_threshold) # similarity_threshold and top K # 4. Reorder the documents # Less relevant document will be at the middle of the list and more relevant elements at the beginning or end of the list. # Reference: https://python.langchain.com/docs/modules/data_connection/retrievers/long_context_reorder reordering = LongContextReorder() # 5. Create compressor pipeline and retriever pipeline_compressor = DocumentCompressorPipeline( transformers=[splitter, redundant_filter, relevant_filter, reordering] ) compression_retriever = ContextualCompressionRetriever( base_compressor=pipeline_compressor, base_retriever=base_retriever ) print("compression retriever done") return compression_retriever compression_retriever_HF = create_compression_retriever( embeddings=embeddings_HuggingFace, base_retriever=base_retriever_HF, k=16) # Can use the following to rank the returned embeddings in order of relevance but all are used anyway so I am skipping for now (can test later) ''' def CohereRerank_retriever( base_retriever, cohere_api_key,cohere_model="rerank-multilingual-v2.0", top_n=8 ): """Build a ContextualCompressionRetriever using Cohere Rerank endpoint to reorder the results based on relevance. Parameters: base_retriever: a Vectorstore-backed retriever cohere_api_key: the Cohere API key cohere_model: The Cohere model can be either 'rerank-english-v2.0' or 'rerank-multilingual-v2.0', with the latter being the default. top_n: top n results returned by Cohere rerank, default = 8. """ print("cohere rerank started") compressor = CohereRerank( cohere_api_key=cohere_api_key, model=cohere_model, top_n=top_n ) retriever_Cohere = ContextualCompressionRetriever( base_compressor=compressor, base_retriever=base_retriever ) print("cohere rerank done") return retriever_Cohere ''' # Can use any of these LLMs for responses, for now I am Gemini-Pro for the bot (this is for responses now, not embeddings) def instantiate_LLM(LLM_provider,api_key,temperature=0.8,top_p=0.95,model_name=None): """Instantiate LLM in Langchain. Parameters: LLM_provider (str): the LLM provider; in ["OpenAI","Google","HuggingFace"] model_name (str): in ["gpt-3.5-turbo", "gpt-3.5-turbo-0125", "gpt-4-turbo-preview", "gemini-pro", "mistralai/Mistral-7B-Instruct-v0.2"]. api_key (str): google_api_key or openai_api_key or huggingfacehub_api_token temperature (float): Range: 0.0 - 1.0; default = 0.5 top_p (float): : Range: 0.0 - 1.0; default = 1. """ if LLM_provider == "OpenAI": llm = ChatOpenAI( api_key=api_key, model="gpt-3.5-turbo", # in ["gpt-3.5-turbo", "gpt-3.5-turbo-0125", "gpt-4-turbo-preview"] temperature=temperature, model_kwargs={ "top_p": top_p } ) if LLM_provider == "Google": llm = ChatGoogleGenerativeAI( google_api_key=api_key, model="gemini-pro", # "gemini-pro" temperature=temperature, top_p=top_p, convert_system_message_to_human=True, safety_settings={ HarmCategory.HARM_CATEGORY_DANGEROUS_CONTENT: HarmBlockThreshold.BLOCK_NONE, HarmCategory.HARM_CATEGORY_HARASSMENT: HarmBlockThreshold.BLOCK_NONE, HarmCategory.HARM_CATEGORY_HATE_SPEECH: HarmBlockThreshold.BLOCK_NONE, HarmCategory.HARM_CATEGORY_SEXUALLY_EXPLICIT: HarmBlockThreshold.BLOCK_NONE, HarmCategory.HARM_CATEGORY_DANGEROUS_CONTENT: HarmBlockThreshold.BLOCK_NONE}, ) if LLM_provider == "HuggingFace": llm = HuggingFaceHub( repo_id="mistralai/Mistral-7B-Instruct-v0.2", # "mistralai/Mistral-7B-Instruct-v0.2" huggingfacehub_api_token=api_key, model_kwargs={ "temperature":temperature, "top_p": top_p, "do_sample": True, "max_new_tokens":1024 }, ) return llm # This creates history (memory) of prior questions. I am using Gemini for this but I left the code if I decide to go to GPT later on. def create_memory(model_name='gemini-pro',memory_max_token=None): #def create_memory(model_name='gpt-3.5-turbo',memory_max_token=None): """Creates a ConversationSummaryBufferMemory for gpt-3.5-turbo. Creates a ConversationBufferMemory for the other models.""" if model_name=="gpt-3.5-turbo": if memory_max_token is None: memory_max_token = 1024 # max_tokens for 'gpt-3.5-turbo' = 4096 memory = ConversationSummaryBufferMemory( max_token_limit=memory_max_token, llm=ChatOpenAI(model_name="gpt-3.5-turbo",openai_api_key=openai_api_key,temperature=0.1), return_messages=True, memory_key='chat_history', output_key="answer", input_key="question" ) else: memory = ConversationBufferMemory( return_messages=True, memory_key='chat_history', output_key="answer", input_key="question", ) return memory # Set a small memory_max_token, just to show how older messages are summarized if max_token_limit is exceeded. memory = create_memory(model_name='gemini-pro',memory_max_token=None) #memory = create_memory(model_name='gpt-3.5-turbo',memory_max_token=20) # save history as context for the conversation memory.save_context( inputs={"question":"sample"}, outputs={"answer":"sample"} ) # loads the template above memory.load_memory_variables({}) # Create the prompt template for the conversation standalone_question_template = """Given the following conversation and a follow up question, rephrase the follow up question to be a standalone question, in the English language.\n\n Chat History:\n{chat_history}\n Follow Up Input: {question}\n Standalone question: {question}""" #standalone_question_prompt = PromptTemplate( # input_variables=['chat_history', 'question'], # template=standalone_question_template #) def answer_template(language="english"): """Pass the standalone question along with the chat history and context to the `LLM` which will answer""" template = f"""You are a professor who is an expert in needs assessment. Answer the question at the end (convert the queestion to {language} language if it is not). But do not include the question in the response. Use only the following context (delimited by