import streamlit as st import pandas as pd from modules.data_preparation import prepare_df, plot_3dgraph import numpy as np import datetime st.title('Sentiment Analysis for Price Trend Prediction') st.header(f'Data based on Platts News and Insights Data') st.subheader(f'{datetime.datetime.now()}') news_category = st.selectbox("Select Market Movers Category", ("Crude Oil", "Light Ends", "Middle Distillates", "Heavy Distillates")) latest_news = prepare_df(pd.read_csv('data/results_platts_09082024_clean.csv'), news_category) top_news = prepare_df(pd.read_csv('data/topresults_platts_09082024_clean.csv'), news_category) df_news = pd.concat([latest_news, top_news], ignore_index=True).drop_duplicates(['headline']) df_mean = pd.DataFrame({ 'headline' : ['MEAN OF ALL NEWS'], 'negative_score' : [df_news['negative_score'].mean()], 'neutral_score' : [df_news['neutral_score'].mean()], 'positive_score' : [df_news['positive_score'].mean()], 'topic_verification' : [''] }) df_news_final = pd.concat([df_news, df_mean]).drop(columns=['body']) df_news_final.index = np.arange(1, len(df_news_final) + 1) df_news_final st.plotly_chart(plot_3dgraph(df_news_final), use_container_width=True)