import gradio as gr from datasets import load_dataset import random import numpy as np from transformers import CLIPProcessor, CLIPModel from os import environ import clip import pickle import requests import torch import os from huggingface_hub import hf_hub_download from torch import nn import torch.nn.functional as nnf import sys from typing import Tuple, List, Union, Optional from transformers import GPT2Tokenizer, GPT2LMHeadModel, AdamW, get_linear_schedule_with_warmup N = type(None) V = np.array ARRAY = np.ndarray ARRAYS = Union[Tuple[ARRAY, ...], List[ARRAY]] VS = Union[Tuple[V, ...], List[V]] VN = Union[V, N] VNS = Union[VS, N] T = torch.Tensor TS = Union[Tuple[T, ...], List[T]] TN = Optional[T] TNS = Union[Tuple[TN, ...], List[TN]] TSN = Optional[TS] TA = Union[T, ARRAY] D = torch.device CPU = torch.device('cpu') device = "cuda" if torch.cuda.is_available() else "cpu" # # Load the pre-trained model and processor clip_model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32") clip_processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32") #orig_clip_model, orig_clip_processor = clip.load("ViT-B/32", device=device, jit=False) # Load the Unsplash dataset dataset = load_dataset("jamescalam/unsplash-25k-photos", split="train") # all 25K images are in train split dataset_size = len(dataset) # Load gpt and modifed weights for captions gpt = GPT2LMHeadModel.from_pretrained('gpt2') tokenizer = GPT2Tokenizer.from_pretrained("gpt2") conceptual_weight = hf_hub_download(repo_id="akhaliq/CLIP-prefix-captioning-conceptual-weights", filename="conceptual_weights.pt") coco_weight = hf_hub_download(repo_id="akhaliq/CLIP-prefix-captioning-COCO-weights", filename="coco_weights.pt") height = 256 # height for resizing images def predict(image, labels): with torch.no_grad(): inputs = clip_processor(text=[f"a photo of {c}" for c in labels], images=image, return_tensors="pt", padding=True) outputs = clip_model(**inputs) logits_per_image = outputs.logits_per_image # this is the image-text similarity score probs = logits_per_image.softmax(dim=1).cpu().numpy() # we can take the softmax to get the label probabilities return {k: float(v) for k, v in zip(labels, probs[0])} # def predict2(image, labels): # image = orig_clip_processor(image).unsqueeze(0).to(device) # text = clip.tokenize(labels).to(device) # with torch.no_grad(): # image_features = orig_clip_model.encode_image(image) # text_features = orig_clip_model.encode_text(text) # logits_per_image, logits_per_text = orig_clip_model(image, text) # probs = logits_per_image.softmax(dim=-1).cpu().numpy() # return {k: float(v) for k, v in zip(labels, probs[0])} def rand_image(): n = dataset.num_rows r = random.randrange(0,n) return dataset[r]["photo_image_url"] + f"?h={height}" # Unsplash allows dynamic requests, including size of image def set_labels(text): return text.split(",") # get_caption = gr.load("ryaalbr/caption", src="spaces", hf_token=environ["api_key"]) # def generate_text(image, model_name): # return get_caption(image, model_name) class MLP(nn.Module): def forward(self, x: T) -> T: return self.model(x) def __init__(self, sizes: Tuple[int, ...], bias=True, act=nn.Tanh): super(MLP, self).__init__() layers = [] for i in range(len(sizes) -1): layers.append(nn.Linear(sizes[i], sizes[i + 1], bias=bias)) if i < len(sizes) - 2: layers.append(act()) self.model = nn.Sequential(*layers) class ClipCaptionModel(nn.Module): def get_dummy_token(self, batch_size: int, device: D) -> T: return torch.zeros(batch_size, self.prefix_length, dtype=torch.int64, device=device) def forward(self, tokens: T, prefix: T, mask: Optional[T] = None, labels: Optional[T] = None): embedding_text = self.gpt.transformer.wte(tokens) prefix_projections = self.clip_project(prefix).view(-1, self.prefix_length, self.gpt_embedding_size) embedding_cat = torch.cat((prefix_projections, embedding_text), dim=1) if labels is not None: dummy_token = self.get_dummy_token(tokens.shape[0], tokens.device) labels = torch.cat((dummy_token, tokens), dim=1) out = self.gpt(inputs_embeds=embedding_cat, labels=labels, attention_mask=mask) return out def __init__(self, prefix_length: int, prefix_size: int = 512): super(ClipCaptionModel, self).__init__() self.prefix_length = prefix_length self.gpt = gpt self.gpt_embedding_size = self.gpt.transformer.wte.weight.shape[1] if prefix_length > 10: # not enough memory self.clip_project = nn.Linear(prefix_size, self.gpt_embedding_size * prefix_length) else: self.clip_project = MLP((prefix_size, (self.gpt_embedding_size * prefix_length) // 2, self.gpt_embedding_size * prefix_length)) #clip_model, preprocess = clip.load("ViT-B/32", device=device, jit=False) def get_caption(img,model_name): prefix_length = 10 model = ClipCaptionModel(prefix_length) if model_name == "COCO": model_path = coco_weight else: model_path = conceptual_weight model.load_state_dict(torch.load(model_path, map_location=torch.device('cpu'))) model = model.eval() model = model.to(device) input = clip_processor(images=img, return_tensors="pt").to(device) with torch.no_grad(): prefix = clip_model.get_image_features(**input) # image = preprocess(img).unsqueeze(0).to(device) # with torch.no_grad(): # prefix = clip_model.encode_image(image).to(device, dtype=torch.float32) prefix_embed = model.clip_project(prefix).reshape(1, prefix_length, -1) output = model.gpt.generate(inputs_embeds=prefix_embed, num_beams=1, do_sample=False, num_return_sequences=1, no_repeat_ngram_size=1, max_new_tokens = 67, pad_token_id = tokenizer.eos_token_id, eos_token_id = tokenizer.encode('.')[0], renormalize_logits = True) generated_text_prefix = tokenizer.decode(output[0], skip_special_tokens=True) return generated_text_prefix[:-1] if generated_text_prefix[-1] == "." else generated_text_prefix #remove period at end if present # get_images = gr.load("ryaalbr/ImageSearch", src="spaces", hf_token=environ["api_key"]) # def search_images(text): # return get_images(text, api_name="images") emb_filename = 'unsplash-25k-photos-embeddings-indexes.pkl' with open(emb_filename, 'rb') as emb: id2url, img_names, img_emb = pickle.load(emb) def search(search_query): with torch.no_grad(): # Encode and normalize the description using CLIP (HF CLIP) inputs = clip_processor(text=search_query, images=None, return_tensors="pt", padding=True) text_encoded = clip_model.get_text_features(**inputs) # # Encode and normalize the description using CLIP (original CLIP) # text_encoded = orig_clip_model.encode_text(clip.tokenize(search_query)) # text_encoded /= text_encoded.norm(dim=-1, keepdim=True) # Retrieve the description vector text_features = text_encoded.cpu().numpy() # Compute the similarity between the descrption and each photo using the Cosine similarity similarities = (text_features @ img_emb.T).squeeze(0) # Sort the photos by their similarity score best_photos = similarities.argsort()[::-1] best_photos = best_photos[:15] #best_photos = sorted(zip(similarities, range(img_emb.shape[0])), key=lambda x: x[0], reverse=True) best_photo_ids = img_names[best_photos] imgs = [] # Iterate over the top 5 results for id in best_photo_ids: id, _ = id.split('.') url = id2url.get(id, "") if url == "": continue img = url + "?h=512" # r = requests.get(url + "?w=512", stream=True) # img = Image.open(r.raw) #credits = f'Photo by {photo["photographer_first_name"]} {photo["photographer_last_name"]} on Unsplash' imgs.append(img) #display(HTML(f'Photo by {photo["photographer_first_name"]} {photo["photographer_last_name"]} on Unsplash')) if len(imgs) == 5: break return imgs with gr.Blocks() as demo: with gr.Tab("Classification"): labels = gr.State([]) # creates hidden component that can store a value and can be used as input/output; here, initial value is an empty list instructions = """## Instructions: 1. Enter list of labels separated by commas (or select one of the examples below) 2. Click **Get Random Image** to grab a random image from dataset 3. Click **Classify Image** to analyze current image against the labels (including after changing labels) """ gr.Markdown(instructions) with gr.Row(variant="compact"): label_text = gr.Textbox(show_label=False, placeholder="Enter classification labels").style(container=False) #submit_btn = gr.Button("Submit").style(full_width=False) gr.Examples(["spring, summer, fall, winter", "mountain, city, beach, ocean, desert, forest, valley", "red, blue, green, white, black, purple, brown", "person, animal, landscape, something else", "day, night, dawn, dusk"], inputs=label_text) with gr.Row(): with gr.Column(variant="panel"): im = gr.Image(interactive=False).style(height=height) with gr.Row(): get_btn = gr.Button("Get Random Image").style(full_width=False) class_btn = gr.Button("Classify Image").style(full_width=False) cf = gr.Label() #submit_btn.click(fn=set_labels, inputs=label_text) label_text.change(fn=set_labels, inputs=label_text, outputs=labels) # parse list if changed label_text.blur(fn=set_labels, inputs=label_text, outputs=labels) # parse list if focus is moved elsewhere; ensures that list is fully parsed before classification label_text.submit(fn=set_labels, inputs=label_text, outputs=labels) # parse list if user hits enter; ensures that list is fully parsed before classification get_btn.click(fn=rand_image, outputs=im) #im.change(predict, inputs=[im, labels], outputs=cf) class_btn.click(predict, inputs=[im, labels], outputs=cf) gr.HTML(f"Dataset: Unsplash Lite; Number of Images: {dataset_size}") with gr.Tab("Captioning"): instructions = """## Instructions: 1. Click **Get Random Image** to grab a random image from dataset 1. Click **Create Caption** to generate a caption for the image 1. Different models can be selected: * **COCO** generally produces more straight-forward captions, but it is a smaller dataset and therefore struggles to recognize certain objects * **Conceptual Captions** is a much larger dataset but sometimes produces results that resemble social media posts """ gr.Markdown(instructions) with gr.Row(): with gr.Column(variant="panel"): im_cap = gr.Image(interactive=False).style(height=height) model_name = gr.Radio(choices=["COCO","Conceptual Captions"], type="value", value="COCO", label="Model").style(container=True, item_container = False) with gr.Row(): get_btn_cap = gr.Button("Get Random Image").style(full_width=False) caption_btn = gr.Button("Create Caption").style(full_width=False) caption = gr.Textbox(label='Caption', elem_classes="caption-text") get_btn_cap.click(fn=rand_image, outputs=im_cap) #im_cap.change(generate_text, inputs=im_cap, outputs=caption) caption_btn.click(get_caption, inputs=[im_cap, model_name], outputs=caption) gr.HTML(f"Dataset: Unsplash Lite; Number of Images: {dataset_size}") with gr.Tab("Search"): instructions = """## Instructions: 1. Enter a search query (or select one of the examples below) 2. Click **Find Images** to find images that match the query (top 5 are shown in order from left to right) 3. Keep in mind that the dataset contains mostly nature-focused images""" gr.Markdown(instructions) with gr.Column(variant="panel"): desc = gr.Textbox(show_label=False, placeholder="Enter description").style(container=False) gr.Examples(["someone holding flowers", "someone holding pink flowers", "red fruit in a person's hands", "an aerial view of forest", "a waterfall with a rainbow" ], inputs=desc) search_btn = gr.Button("Find Images").style(full_width=False) gallery = gr.Gallery(show_label=False).style(grid=(2,2,3,5)) search_btn.click(search,inputs=desc, outputs=gallery, postprocess=False) gr.HTML(f"Dataset: Unsplash Lite; Number of Images: {dataset_size}") demo.launch()