"""
Conversation prompt template of Video-LLaMA.
Adapted from: https://github.com/Vision-CAIR/MiniGPT-4/blob/main/minigpt4/conversation/conversation.py
"""
import argparse
import time
from PIL import Image
import sys
import os
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, LlamaTokenizer
from transformers import StoppingCriteria, StoppingCriteriaList
import dataclasses
from enum import auto, Enum
from typing import List, Tuple, Any
import os
import sys
from global_local.common.registry import registry
from global_local.processors.video_processor import ToTHWC,ToUint8,load_video
from global_local.processors import Blip2ImageEvalProcessor
#from video_llama.models.ImageBind.data import load_and_transform_audio_data
class SeparatorStyle(Enum):
"""Different separator style."""
SINGLE = auto()
TWO = auto()
LLAMA_2 = auto()
@dataclasses.dataclass
class Conversation:
"""A class that keeps all conversation history."""
system: str
roles: List[str]
messages: List[List[str]]
offset: int
# system_img: List[Image.Image] = []
sep_style: SeparatorStyle = SeparatorStyle.SINGLE
sep: str = "###"
sep2: str = None
skip_next: bool = False
conv_id: Any = None
def get_prompt(self):
if self.sep_style == SeparatorStyle.SINGLE:
ret = self.system + self.sep
for role, message in self.messages:
if message:
ret += role + ": " + message + self.sep
else:
ret += role + ":"
return ret
elif self.sep_style == SeparatorStyle.TWO:
seps = [self.sep, self.sep2]
ret = self.system + seps[0]
for i, (role, message) in enumerate(self.messages):
if message:
ret += role + ": " + message + seps[i % 2]
else:
ret += role + ":"
return ret
elif self.sep_style == SeparatorStyle.LLAMA_2:
wrap_sys = lambda msg: f"<>\n{msg}\n<>\n\n"
wrap_inst = lambda msg: f"[INST] {msg} [/INST]"
ret = ""
for i, (role, message) in enumerate(self.messages):
if i == 0:
assert message, "first message should not be none"
assert role == self.roles[0], "first message should come from user"
if message:
if type(message) is tuple:
message, _, _ = message
if i == 0: message = wrap_sys(self.system) + message
if i % 2 == 0:
message = wrap_inst(message)
ret += self.sep + message
else:
ret += " " + message + " " + self.sep2
else:
ret += ""
ret = ret.lstrip(self.sep)
return ret
else:
raise ValueError(f"Invalid style: {self.sep_style}")
def append_message(self, role, message):
self.messages.append([role, message])
def to_gradio_chatbot(self):
ret = []
for i, (role, msg) in enumerate(self.messages[self.offset:]):
if i % 2 == 0:
ret.append([msg, None])
else:
ret[-1][-1] = msg
return ret
def copy(self):
return Conversation(
system=self.system,
# system_img=self.system_img,
roles=self.roles,
messages=[[x, y] for x, y in self.messages],
offset=self.offset,
sep_style=self.sep_style,
sep=self.sep,
sep2=self.sep2,
conv_id=self.conv_id)
def dict(self):
return {
"system": self.system,
# "system_img": self.system_img,
"roles": self.roles,
"messages": self.messages,
"offset": self.offset,
"sep": self.sep,
"sep2": self.sep2,
"conv_id": self.conv_id,
}
class StoppingCriteriaSub(StoppingCriteria):
def __init__(self, stops=[], encounters=1):
super().__init__()
self.stops = stops
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor):
for stop in self.stops:
if torch.all((stop == input_ids[0][-len(stop):])).item():
return True
return False
CONV_VISION = Conversation(
system="Give the following image: ImageContent. "
"You will be able to see the image once I provide it to you. Please answer my questions.",
roles=("Human", "Assistant"),
messages=[],
offset=0,
sep_style=SeparatorStyle.SINGLE,
sep="###",
)
default_conversation = Conversation(
system="",
roles=("Human", "Assistant"),
messages=[],
offset=0,
sep_style=SeparatorStyle.SINGLE,
sep="###",
)
conv_llava_llama_2 = Conversation(
system="You are a helpful language and vision assistant. "
"You are able to understand the visual content that the user provides, "
"and assist the user with a variety of tasks using natural language.",
roles=("USER", "ASSISTANT"),
messages=(),
offset=0,
sep_style=SeparatorStyle.LLAMA_2,
sep="",
sep2="",
)
class Chat:
def __init__(self, model, vis_processor, device='cuda:0'):
self.device = device
self.model = model
self.vis_processor = vis_processor
self.image_vis_processor = Blip2ImageEvalProcessor()
# stop_words_ids = [torch.tensor([835]).to(self.device),
# torch.tensor([2277, 29937]).to(self.device)] # '###' can be encoded in two different ways.
# self.stopping_criteria = StoppingCriteriaList([StoppingCriteriaSub(stops=stop_words_ids)])
self.num_frames_per_clip = 16
self.num_segments = 4
def ask(self, text, conv):
if len(conv.messages) > 0 and conv.messages[-1][0] == conv.roles[0] \
and ('' in conv.messages[-1][1] or '' in conv.messages[-1][1]): # last message is image.
conv.messages[-1][1] = ' '.join([conv.messages[-1][1], text])
else:
conv.append_message(conv.roles[0], text)
def answer(self, conv, img_list, max_new_tokens=300, num_beams=1, min_length=1, top_p=0.9,
repetition_penalty=1.0, length_penalty=1, temperature=1.0, max_length=2000):
conv.append_message(conv.roles[1], None)
embs = self.get_context_emb(conv, img_list)
current_max_len = embs.shape[1] + max_new_tokens
if current_max_len - max_length > 0:
print('Warning: The number of tokens in current conversation exceeds the max length. '
'The model will not see the contexts outside the range.')
begin_idx = max(0, current_max_len - max_length)
embs = embs[:, begin_idx:]
if conv.sep =="###":
stop_words_ids = [torch.tensor([835]).to(self.device),
torch.tensor([2277, 29937]).to(self.device)] # '###' can be encoded in two different ways.
stopping_criteria = StoppingCriteriaList([StoppingCriteriaSub(stops=stop_words_ids)])
else:
stop_words_ids = [torch.tensor([2]).to(self.device)]
stopping_criteria = StoppingCriteriaList([StoppingCriteriaSub(stops=stop_words_ids)])
# stopping_criteria
outputs = self.model.llama_model.generate(
inputs_embeds=embs,
max_new_tokens=max_new_tokens,
stopping_criteria=stopping_criteria,
num_beams=num_beams,
do_sample=True,
min_length=min_length,
top_p=top_p,
repetition_penalty=repetition_penalty,
length_penalty=length_penalty,
temperature=temperature,
)
output_token = outputs[0]
if output_token[0] == 0: # the model might output a unknow token at the beginning. remove it
output_token = output_token[1:]
if output_token[0] == 1: # some users find that there is a start token at the beginning. remove it
output_token = output_token[1:]
output_text = self.model.llama_tokenizer.decode(output_token, add_special_tokens=False)
if conv.sep =="###":
output_text = output_text.split('###')[0] # remove the stop sign '###'
output_text = output_text.split('Assistant:')[-1].strip()
else:
output_text = output_text.split(conv.sep2)[0] # remove the stop sign '###'
output_text = output_text.split(conv.roles[1]+':')[-1].strip()
conv.messages[-1][1] = output_text
return output_text, output_token.cpu().numpy()
def upload_video(self, video_path, conv, img_list):
msg = ""
if isinstance(video_path, str): # is a video path
ext = os.path.splitext(video_path)[-1].lower()
print(video_path)
# image = self.vis_processor(image).unsqueeze(0).to(self.device)
video, msg = load_video(
video_path=video_path,
n_frms=8,
height=224,
width=224,
sampling ="uniform", return_msg = True
)
video = self.vis_processor.transform(video)
video = video.unsqueeze(0).to(self.device)
# print(image)
else:
raise NotImplementedError
try:
audio_flag = 1
audio = load_and_transform_audio_data([video_path],"cpu", clips_per_video=8)
audio = audio.to(self.device)
except :
print('no audio is found')
audio_flag = 0
finally:
if audio_flag == 1:
# image_emb, _ = self.model.encode_videoQformer_audiovideo(video,audio)
image_emb, _ = self.model.encode_videoQformer_visual(video)
audio_emb,_ = self.model.encode_audioQformer(audio)
img_list.append(audio_emb)
img_list.append(image_emb)
conv.system = ""
# conv.append_message(conv.roles[0], "The audio of this video is ")
conv.append_message(conv.roles[0], "Close your eyes, open your ears and you imagine only based on the sound that: . \
Close your ears, open your eyes and you see that . \
Now answer my question based on what you have just seen and heard.")
else: # only vison no audio
# conv.system = "You can understand the video that the user provides. Follow the instructions carefully and explain your answers in detail."
image_emb, _ = self.model.encode_videoQformer_visual(video)
img_list.append(image_emb)
conv.append_message(conv.roles[0], " "+ msg)
return "Received."
def upload_video_without_audio(self, video_path, conv, img_list):
msg = ""
if isinstance(video_path, str): # is a video path
ext = os.path.splitext(video_path)[-1].lower()
print(video_path)
# image = self.vis_processor(image).unsqueeze(0).to(self.device)
video, msg = load_video(
video_path=video_path,
n_frms=self.num_frames_per_clip*self.num_segments,
height=224,
width=224,
sampling ="uniform", return_msg = True
)
video = self.vis_processor.transform(video)
video = video.unsqueeze(0).to(self.device)
else:
raise NotImplementedError
# conv.system = "You can understand the video that the user provides. Follow the instructions carefully and explain your answers in detail."
#image_emb, _ = self.model.encode_videoQformer_visual(video)
image_emb, _ = self.process_video_frames(video)
img_list.append(image_emb)
conv.append_message(conv.roles[0], " "+ msg)
return "Received."
def process_video_frames(self, all_frames):
total_num_frames = self.num_frames_per_clip * self.num_segments
global_clip_indices = torch.linspace(0, total_num_frames-1, steps=self.num_frames_per_clip)
short_window_indices = torch.linspace(0, total_num_frames-1, steps=self.num_frames_per_clip * self.num_segments)
global_processed_frames = []
for i in global_clip_indices:
i = int(i)
curr = all_frames[:, :, i]
#curr = np.uint8(all_frames[i])
#curr = frame_transform(Image.fromarray(curr))
global_processed_frames.append(curr)
global_processed_frames = torch.stack(global_processed_frames, dim=2)
'''if len(global_processed_frames) < args.num_frames_per_clip:
diff = args.num_frames_per_clip - len(global_processed_frames)
pad = global_processed_frames[-1].unsqueeze(0).repeat(diff, 1, 1, 1)
global_processed_frames = torch.cat((global_processed_frames, pad), dim=0)'''
short_window_processed_frames = []
for i in short_window_indices:
i = int(i)
curr = all_frames[:, :, i]
#curr = np.uint8(all_frames[i])
#curr = frame_transform(Image.fromarray(curr))
short_window_processed_frames.append(curr)
short_window_processed_frames = torch.stack(short_window_processed_frames, dim=2)
'''if len(short_window_processed_frames) < args.num_frames_per_clip * args.num_segments:
diff = args.num_frames_per_clip * args.num_segments - len(short_window_processed_frames)
pad = short_window_processed_frames[-1].unsqueeze(0).repeat(diff, 1, 1, 1)
short_window_processed_frames = torch.cat((short_window_processed_frames, pad), dim=0)'''
global_attn_mask = torch.zeros((self.num_frames_per_clip))
global_attn_mask[:global_processed_frames.size(2)] = True
short_window_attn_mask = torch.zeros((self.num_frames_per_clip * self.num_segments))
short_window_attn_mask[:short_window_processed_frames.size(2)] = True
global_processed_frames = global_processed_frames.permute((0, 2, 1, 3, 4)).cuda()
short_window_processed_frames = short_window_processed_frames.permute((0, 2, 1, 3, 4)).cuda()
global_frame_attn_mask = global_attn_mask.unsqueeze(0).cuda()
segments_frame_attn_mask = short_window_attn_mask.unsqueeze(0).cuda()
with torch.no_grad():
samples = {'global_video': global_processed_frames, 'global_frame_attn_mask': global_frame_attn_mask, 'segments_video': short_window_processed_frames, 'segments_frame_attn_mask': segments_frame_attn_mask}
merged_video_embeds, merged_video_embeds_mask = self.model.compute_merged_video_embeds(samples)
return merged_video_embeds, merged_video_embeds_mask
def upload_img(self, image, conv, img_list):
msg = ""
if isinstance(image, str): # is a image path
raw_image = Image.open(image).convert('RGB') # 增加一个时间维度
image = self.image_vis_processor(raw_image).unsqueeze(0).unsqueeze(2).to(self.device)
elif isinstance(image, Image.Image):
raw_image = image
image = self.image_vis_processor(raw_image).unsqueeze(0).unsqueeze(2).to(self.device)
elif isinstance(image, torch.Tensor):
if len(image.shape) == 3:
image = image.unsqueeze(0)
image = image.to(self.device)
else:
raise NotImplementedError
image_emb, _ = self.model.encode_videoQformer_visual(image)
img_list.append(image_emb)
# Todo msg=""
conv.append_message(conv.roles[0], " "+ msg)
return "Received."
def get_context_emb(self, conv, img_list):
prompt = conv.get_prompt()
prompt_segs = prompt.split('')
assert len(prompt_segs) == len(img_list) + 1, "Unmatched numbers of image placeholders and images."
seg_tokens = [
self.model.llama_tokenizer(
seg, return_tensors="pt", add_special_tokens=i == 0).to(self.device).input_ids
# only add bos to the first seg
for i, seg in enumerate(prompt_segs)
]
seg_embs = [self.model.llama_model.model.embed_tokens(seg_t) for seg_t in seg_tokens]
mixed_embs = [emb for pair in zip(seg_embs[:-1], img_list) for emb in pair] + [seg_embs[-1]]
mixed_embs = torch.cat(mixed_embs, dim=1)
return mixed_embs
if __name__ =='__main__':
video_path = '/mnt/workspace/videoGPT/Video-LLaMA/examples/applausing.mp4'
# import torch.classes.torchaudio.ffmpeg_StreamReader
# ffmpeg_StreamReader(video_path)
load_and_transform_audio_data([video_path],"cpu", clips_per_video=8)