import gradio as gr from off_topic import OffTopicDetector, Translator translator = Translator("facebook/nllb-200-distilled-600M") detector = OffTopicDetector("openai/clip-vit-base-patch32", image_size="V", translator=translator) def validate(item_id: str, use_title: bool, threshold: float): images, domain, probas, valid_probas, invalid_probas = detector.predict_probas_item(item_id, use_title=use_title) valid_images = [x for i, x in enumerate(images) if valid_probas[i].squeeze() >= threshold] invalid_images = [x for i, x in enumerate(images) if valid_probas[i].squeeze() < threshold] return f"## Domain: {domain}", valid_images, invalid_images with gr.Blocks() as demo: gr.Markdown(""" # Off topic image detector ### This app takes an item ID and classifies its pictures as valid/invalid depending on whether they relate to the domain in which it's been listed. Input an item ID or select one of the preloaded examples below.""") with gr.Row(): with gr.Column(): item_id = gr.Textbox(label="Item ID") with gr.Column(): use_title = gr.Checkbox(label="Use item title", value=True) threshold = gr.Number(label="Threshold", value=0.25, precision=2) with gr.Column(): submit = gr.Button("Submit") gr.HTML("