import streamlit as st import pandas as pd import matplotlib.pyplot as plt from datasets import load_dataset dataset = load_dataset("rwcuffney/pick_a_card_test") #tokenizer = AutoTokenizer.from_pretrained("bert-base-cased") #tokenized_data = tokenizer(dataset["sentence"], return_tensors="np", padding=True) from transformers import AutoFeatureExtractor, AutoModelForImageClassification ''' extractor = AutoFeatureExtractor.from_pretrained("rwcuffney/autotrain-pick_a_card-3726099221") model = AutoModelForImageClassification.from_pretrained("rwcuffney/autotrain-pick_a_card-3726099221") st.write(model.__class__.__name__) st.code(type(model)) extractor = AutoFeatureExtractor.from_pretrained("rwcuffney/autotrain-pick_a_card-3726099222") model = AutoModelForImageClassification.from_pretrained("rwcuffney/autotrain-pick_a_card-3726099222") st.write(model.__class__.__name__) st.code(type(model)) extractor = AutoFeatureExtractor.from_pretrained("rwcuffney/autotrain-pick_a_card-3726099223") model = AutoModelForImageClassification.from_pretrained("rwcuffney/autotrain-pick_a_card-3726099223") st.write(model.__class__.__name__) st.code(type(model)) ''' extractor = AutoFeatureExtractor.from_pretrained("rwcuffney/autotrain-pick_a_card-3726099224") model = AutoModelForImageClassification.from_pretrained("rwcuffney/autotrain-pick_a_card-3726099224") st.write(model.__class__.__name__) st.code(type(model)) from transformers import AutoImageProcessor import torch image = dataset["test"][0] st.image(image) image_processor = AutoImageProcessor.from_pretrained("rwcuffney/autotrain-pick_a_card-3726099224") inputs = image_processor(image, return_tensors="pt") ''' extractor = AutoFeatureExtractor.from_pretrained("rwcuffney/autotrain-pick_a_card-3726099225") model = AutoModelForImageClassification.from_pretrained("rwcuffney/autotrain-pick_a_card-3726099225") st.write(model.__class__.__name__) st.code(type(model)) ''' ''' x = st.slider('Select a value') st.write(x, 'squared is', x * x) import pandas as pd #df = pd.read_csv('https://rwcuffney/autotrain-data-pick_a_card/cards.csv').sort_values('class index') #st.dataframe(df.head(3)) # from datasets import load_dataset dataset = load_dataset("https://rwcuffney/autotrain-data-pick_a_card") # st.write(type(dataset)) # st.write('Hello World') from datasets import load_dataset #dataset = load_dataset("rwcuffney/autotrain-data-pick_a_card") #st.write(dataset) import pandas as pd import requests import io # Downloading the csv file from your GitHub account url = "https://huggingface.co/datasets/rwcuffney/autotrain-data-pick_a_card/raw/main/cards.csv" # Make sure the url is the raw version of the file on GitHub download = requests.get(url).content # Reading the downloaded content and turning it into a pandas dataframe df = pd.read_csv(io.StringIO(download.decode('utf-8'))) #df = pd.read_csv('playing_cards/cards.csv').sort_values('class index') df_test = df[df['data set']=='test'] df_train = df[df['data set']=='train'] df_validate = df[df['data set']=='validate'] from datasets import load_dataset #this isn't working dataset = load_dataset("rwcuffney/pick_a_card_test") #rwcuffney/pick_a_card_test st.write(df.head(20)) ### '''