import streamlit as st import pandas as pd import matplotlib.pyplot as plt import requests import io #import streamlit as st #import pandas as pd #import matplotlib.pyplot as plt st.title('Playing cards Image Analysis') #sample slider; feel free to remove: #x = st.slider('Select a value') #st.write(x, 'squared is', x * x) ''' This next piece of code will hit GitHub for two csv files One is the original dataset, broken up into test, train, valid. The second csv is the test dataset, with the results after the models were run through the API ''' # Downloading the csv file from your GitHub account url = "https://huggingface.co/datasets/rwcuffney/autotrain-data-pick_a_card/raw/main/cards.csv" download = requests.get(url).content # Reading the downloaded content and turning it into a pandas data frame df = pd.read_csv(io.StringIO(download.decode('utf-8'))) #df = pd.read_csv('playing_cards/cards.csv').sort_values('class index') df_fulldataset=df # Downloading the csv file from your GitHub account url = "https://huggingface.co/datasets/rwcuffney/autotrain-data-pick_a_card/raw/main/ML_results.csv" download = requests.get(url).content # Reading the downloaded content and turning it into a pandas data frame df = pd.read_csv(io.StringIO(download.decode('utf-8'))) #df = pd.read_csv('playing_cards/cards.csv').sort_values('class index') df_test = df # Create the button if st.button('Click me to re-run code',key='RunCode_button'): # Call the function when the button is clicked st.experimental_rerun() st.header('Sample of the .csv data:') x = st.slider('Select a value',value=10,max_value=8000) st.table(df_fulldataset.sample(x)) ### HORIZONTAL BAR ### st.header('Distribution of the playing card images:') # Get the value counts of the 'labels' column value_counts = df_fulldataset.groupby('labels')['class index'].count().iloc[::-1] fig, ax = plt.subplots(figsize=(10,10)) # Create a bar chart of the value counts ax = value_counts.plot.barh() # Set the chart title and axis labels ax.set_title('Value Counts of Labels') ax.set_xlabel('Label') ax.set_ylabel('Count') # Show the chart st.pyplot(fig) ### PIE CHART ### st.header('Balance of Train,Valid,Test datasets:') # Get the value counts of the 'labels' column value_counts = df_fulldataset.groupby('data set')['class index'].count().iloc[::-1] value_counts =df_fulldataset['data set'].value_counts() fig, ax = plt.subplots(figsize=(5,5) ) # Create a bar chart of the value counts ax = value_counts.plot.pie(autopct='%1.1f%%') # Set the chart title and axis labels # Show the chart st.pyplot(fig) models_run= ['SwinForImageClassification_24', 'ViTForImageClassification_22', 'SwinForImageClassification_21', 'ResNetForImageClassification_23', 'BeitForImageClassification_25'] from enum import Enum API_dict = dict( SwinForImageClassification_21="https://api-inference.huggingface.co/models/rwcuffney/autotrain-pick_a_card-3726099221", ViTForImageClassification_22="https://api-inference.huggingface.co/models/rwcuffney/autotrain-pick_a_card-3726099222", ResNetForImageClassification_23= "https://api-inference.huggingface.co/models/rwcuffney/autotrain-pick_a_card-3726099223", SwinForImageClassification_24 = "https://api-inference.huggingface.co/models/rwcuffney/autotrain-pick_a_card-3726099224", BeitForImageClassification_25="https://api-inference.huggingface.co/models/rwcuffney/autotrain-pick_a_card-3726099225") # printing enum member as string #print(Api_URL.ViTForImageClassification_22.value) ####Try it out ### import requests st.header("Try it out") ''' Warning: it will error out at first, resubmit a few times. Each model needs to 'warm up' before they start working. You can use any image... try test/queen of hearts/4.jpg to see an example that Got different results with different models ''' headers = {"Authorization": "Bearer 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"} def query(filename,api_url): #with open(filename, "rb") as f: #data = f.read() response = requests.post(api_url, headers=headers, data=filename) return response.json() #API_URL = "https://api-inference.huggingface.co/models/rwcuffney/autotrain-pick_a_card-3726099224" ##### FORM ##### with st.form("api_form"): api = st.selectbox('Which model do you want to try?',models_run,key='select_box') uploaded_file = st.file_uploader("Choose a file") if uploaded_file is not None: # To read file as bytes: bytes_data = uploaded_file.getvalue() #st.write(bytes_data) st.image(uploaded_file) submitted = st.form_submit_button("Submit") if submitted: st.write(API_dict[api]) output = query(bytes_data,API_dict[api]) prediction = output[0]['label'] st.write(f'prediction = {prediction}') st.text(output) #### FUNCTIONS #### import sklearn from sklearn import metrics import matplotlib.pyplot as plt index = ['accuracy_score','Weighted f1', 'Cohen Kappa','Matthews'] df_Metrics =pd.DataFrame(index=index) labels = df_test['labels'].unique() ### FUNCTION TO SHOW THE METRICS def show_metrics(test,pred,name): from sklearn import metrics my_Name = name my_Accuracy_score=metrics.accuracy_score(test, pred) #my_ROC_AUC_score= roc_auc_score(y, model.predict_proba(X), multi_class='ovr') my_Weighted_f1= metrics.f1_score(test, pred,average='weighted') my_Cohen_Kappa = metrics.cohen_kappa_score(test, pred) my_Matthews_coefficient=metrics.matthews_corrcoef(test, pred) st.header(f'Metrics for {my_Name}:') st.write(f'Accuracy Score........{metrics.accuracy_score(test, pred):.4f}\n\n' \ #f'ROC AUC Score.........{my_ROC_AUC_score:.4f}\n\n' \ f'Weighted f1 score.....{my_Weighted_f1:.4f}\n\n' \ f'Cohen Kappa...........{my_Cohen_Kappa:.4f}\n\n' \ f'Matthews Coefficient..{my_Matthews_coefficient:.4f}\n\n') my_List = [my_Accuracy_score, my_Weighted_f1, my_Cohen_Kappa, my_Matthews_coefficient] df_Metrics[my_Name] = my_List cfm= metrics.confusion_matrix(test, pred) st.caption(f'Confusion Matrix: {my_Name}') cmd = metrics.ConfusionMatrixDisplay(cfm,display_labels=labels) fig, ax = plt.subplots(figsize=(15,15)) ax = cmd.plot(ax=ax, colorbar=False, values_format = '.0f', cmap='Reds')#='tab20')# see color options here https://matplotlib.org/stable/tutorials/colors/colormaps.html plt.xticks(rotation=90) st.pyplot(fig) st.header('Let\'s see how the models performed') ''' The next part of the code will analyze the full dataset. Choose all five models to compare them all ''' ##### FORM ##### with st.form("my_form"): st.write("You can choose from 1 to 5 models") selected_options = st.multiselect( 'Which models would you like to analyze?', models_run) submitted = st.form_submit_button("Submit") if submitted: st.write('you selected',selected_options) ###Show the metrics for each dataset: test = df_test['labels'] #for m in models_run: for m in selected_options: pred = df_test[m] show_metrics(test,pred,m) st.header('Metrics for all models:') st.table(df_Metrics) #### GRAPH THE RESULTS ### import seaborn as sns # Reshape the dataframe into long format using pd.melt() #subset_df = pd.melt(df_Metrics[['SwinForImageClassification_24', #'ViTForImageClassification_22', 'SwinForImageClassification_21', 'ResNetForImageClassification_23', 'BeitForImageClassification_25']].reset_index(), id_vars='index', var_name='Model', value_name='Score') subset_df = pd.melt(df_Metrics[selected_options].reset_index(), id_vars='index', var_name='Model', value_name='Score') sns.set_style('whitegrid') ax=sns.catplot(data=subset_df, x='index', y='Score', hue='Model', kind='bar', palette='Blues', aspect=2) plt.xlabel('Clusters') plt.ylabel('Scores') fig = ax.figure st.pyplot(fig)