import gradio as gr from transformers import pipeline import streamlit as st import socket import threading # Specify the model name explicitly to avoid warnings model_name = "nlptown/bert-base-multilingual-uncased-sentiment" # Load the pre-trained sentiment-analysis pipeline try: classifier = pipeline('sentiment-analysis', model=model_name) except Exception as e: st.error(f"Error loading pipeline: {e}") st.stop() # Function to classify sentiment def classify_text(text): result = classifier(text)[0] return f"{result['label']} with score {result['score']}" # Function to find an available port def find_free_port(): with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s: s.bind(('', 0)) return s.getsockname()[1] # Function to run Gradio in a separate thread def run_gradio(): iface = gr.Interface(fn=classify_text, inputs="text", outputs="text") iface.launch(server_port=find_free_port()) # Start Gradio in a separate thread threading.Thread(target=run_gradio).start() # Streamlit code st.title('IMDb Sentiment Analysis') st.write('This project performs sentiment analysis on IMDb movie reviews using Streamlit.') st.text_input("Enter text for sentiment analysis", key="input_text") if st.button("Classify"): text = st.session_state.input_text if text: result = classify_text(text) st.write(result) else: st.write("Please enter text for classification.")