run_api = False SSD_1B = False import os # Use GPU gpu_info = os.popen("nvidia-smi").read() if "failed" in gpu_info: print("Not connected to a GPU") is_gpu = False else: print(gpu_info) is_gpu = True print(is_gpu) from IPython.display import clear_output def check_enviroment(): try: import torch print("Enviroment is already installed.") except ImportError: print("Enviroment not found. Installing...") # Install requirements from requirements.txt os.system("pip install -r requirements.txt") # Install gradio version 3.48.0 os.system("pip install gradio==3.39.0") # Install python-dotenv os.system("pip install python-dotenv") # Clear the output clear_output() print("Enviroment installed successfully.") # Call the function to check and install Packages if necessary check_enviroment() from IPython.display import clear_output import os import gradio as gr import numpy as np import PIL import base64 import io import torch from diffusers import UNet2DConditionModel, DiffusionPipeline, LCMScheduler # SDXL from diffusers import UNet2DConditionModel, DiffusionPipeline, LCMScheduler # Get the current directory current_dir = os.getcwd() model_path = os.path.join(current_dir) # Set the cache path cache_path = os.path.join(current_dir, "cache") MAX_SEED = np.iinfo(np.int32).max MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "1024")) SECRET_TOKEN = os.getenv("SECRET_TOKEN", "default_secret") # Uncomment the following line if you are using PyTorch 1.10 or later # os.environ["TORCH_USE_CUDA_DSA"] = "1" if is_gpu: # Uncomment the following line if you want to enable CUDA launch blocking os.environ["CUDA_LAUNCH_BLOCKING"] = "1" torch_dtype=torch.float16 variant="fp16" else: # Uncomment the following line if you want to use CPU instead of GPU device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") torch_dtype=torch.float32 variant="fp32" # Get the current directory current_dir = os.getcwd() model_path = os.path.join(current_dir) # Set the cache path cache_path = os.path.join(current_dir, "cache") if not SSD_1B: unet = UNet2DConditionModel.from_pretrained( "latent-consistency/lcm-sdxl", torch_dtype=torch_dtype, variant=variant, cache_dir=cache_path, ) pipe = DiffusionPipeline.from_pretrained( # "stabilityai/stable-diffusion-xl-base-1.0", "stabilityai/sdxl-turbo", unet=unet, torch_dtype=torch_dtype, variant=variant, cache_dir=cache_path, ) pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config) if torch.cuda.is_available(): pipe.to("cuda") else: # SSD-1B from diffusers import LCMScheduler, AutoPipelineForText2Image pipe = AutoPipelineForText2Image.from_pretrained( "segmind/SSD-1B", torch_dtype=torch.float16, variant="fp16", cache_dir=cache_path, ) pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config) if torch.cuda.is_available(): pipe.to("cuda") # load and fuse pipe.load_lora_weights("latent-consistency/lcm-lora-ssd-1b") pipe.fuse_lora() def generate( prompt: str, negative_prompt: str = "", seed: int = 0, width: int = 1024, height: int = 1024, guidance_scale: float = 0.0, num_inference_steps: int = 4, secret_token: str = "", ) -> PIL.Image.Image: if secret_token != SECRET_TOKEN: raise gr.Error( f"Invalid secret token. Please fork the original space if you want to use it for yourself." ) generator = torch.Generator().manual_seed(seed) image = pipe( prompt=prompt, negative_prompt=negative_prompt, width=width, height=height, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps, generator=generator, output_type="pil", ).images[0] return image clear_output() from IPython.display import display def generate_image(prompt="A beautiful and sexy girl"): # Generate the image using the prompt generated_image = generate( prompt=prompt, negative_prompt="", seed=0, width=1024, height=1024, guidance_scale=0.0, num_inference_steps=4, secret_token="default_secret", # Replace with your secret token ) # Display the image in the Jupyter Notebook display(generated_image) if not run_api: secret_token = gr.Text( label="Secret Token", max_lines=1, placeholder="Enter your secret token", ) prompt = gr.Text( label="Prompt", show_label=False, max_lines=1, placeholder="Enter your prompt", container=False, ) result = gr.Image(label="Result", show_label=False) negative_prompt = gr.Text( label="Negative prompt", max_lines=1, placeholder="Enter a negative prompt", visible=True, ) seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0) width = gr.Slider( label="Width", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024, ) height = gr.Slider( label="Height", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024, ) guidance_scale = gr.Slider( label="Guidance scale", minimum=0, maximum=2, step=0.1, value=0.0 ) num_inference_steps = gr.Slider( label="Number of inference steps", minimum=1, maximum=8, step=1, value=4 ) inputs = [ prompt, negative_prompt, seed, width, height, guidance_scale, num_inference_steps, secret_token, ] iface = gr.Interface( fn=generate, inputs=inputs, outputs=result, title="Image Generator", description="Generate images based on prompts.", ) #iface.launch() iface.queue(max_size=32).launch(server_name="0.0.0.0", server_port=7860) # Docker if run_api: with gr.Blocks() as demo: gr.HTML( """
This space is a REST API to programmatically generate images using LCM LoRA SSD-1B.
It is not meant to be directly used through a user interface, but using code and an access key.