# lora_handling.py import torch from typing import Any, Dict, List, Optional, Union import gradio as gr from huggingface_hub import ModelCard, HfFileSystem from flux_app.utilities import calculate_shift, retrieve_timesteps, calculateDuration # Absolute import import numpy as np from PIL import Image import copy from flux_app.lora import loras # FLUX pipeline (continued from previous response) @torch.inference_mode() def flux_pipe_call_that_returns_an_iterable_of_images( self, prompt: Union[str, List[str]] = None, prompt_2: Optional[Union[str, List[str]]] = None, height: Optional[int] = None, width: Optional[int] = None, num_inference_steps: int = 28, timesteps: List[int] = None, guidance_scale: float = 3.5, num_images_per_prompt: Optional[int] = 1, generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, latents: Optional[torch.FloatTensor] = None, prompt_embeds: Optional[torch.FloatTensor] = None, pooled_prompt_embeds: Optional[torch.FloatTensor] = None, output_type: Optional[str] = "pil", return_dict: bool = True, joint_attention_kwargs: Optional[Dict[str, Any]] = None, max_sequence_length: int = 512, good_vae: Optional[Any] = None, ): height = height or self.default_sample_size * self.vae_scale_factor width = width or self.default_sample_size * self.vae_scale_factor self.check_inputs( prompt, prompt_2, height, width, prompt_embeds=prompt_embeds, pooled_prompt_embeds=pooled_prompt_embeds, max_sequence_length=max_sequence_length, ) self._guidance_scale = guidance_scale self._joint_attention_kwargs = joint_attention_kwargs self._interrupt = False batch_size = 1 if isinstance(prompt, str) else len(prompt) device = self._execution_device lora_scale = joint_attention_kwargs.get("scale", None) if joint_attention_kwargs is not None else None prompt_embeds, pooled_prompt_embeds, text_ids = self.encode_prompt( prompt=prompt, prompt_2=prompt_2, prompt_embeds=prompt_embeds, pooled_prompt_embeds=pooled_prompt_embeds, device=device, num_images_per_prompt=num_images_per_prompt, max_sequence_length=max_sequence_length, lora_scale=lora_scale, ) num_channels_latents = self.transformer.config.in_channels // 4 latents, latent_image_ids = self.prepare_latents( batch_size * num_images_per_prompt, num_channels_latents, height, width, prompt_embeds.dtype, device, generator, latents, ) sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps) image_seq_len = latents.shape[1] mu = calculate_shift( image_seq_len, self.scheduler.config.base_image_seq_len, self.scheduler.config.max_image_seq_len, self.scheduler.config.base_shift, self.scheduler.config.max_shift, ) timesteps, num_inference_steps = retrieve_timesteps( self.scheduler, num_inference_steps, device, timesteps, sigmas, mu=mu, ) self._num_timesteps = len(timesteps) guidance = torch.full([1], guidance_scale, device=device, dtype=torch.float32).expand(latents.shape[0]) if self.transformer.config.guidance_embeds else None for i, t in enumerate(timesteps): if self.interrupt: continue timestep = t.expand(latents.shape[0]).to(latents.dtype) noise_pred = self.transformer( hidden_states=latents, timestep=timestep / 1000, guidance=guidance, pooled_projections=pooled_prompt_embeds, encoder_hidden_states=prompt_embeds, txt_ids=text_ids, img_ids=latent_image_ids, joint_attention_kwargs=self.joint_attention_kwargs, return_dict=False, )[0] latents_for_image = self._unpack_latents(latents, height, width, self.vae_scale_factor) latents_for_image = (latents_for_image / self.vae.config.scaling_factor) + self.vae.config.shift_factor image = self.vae.decode(latents_for_image, return_dict=False)[0] yield self.image_processor.postprocess(image, output_type=output_type)[0] latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0] torch.cuda.empty_cache() latents = self._unpack_latents(latents, height, width, self.vae_scale_factor) latents = (latents / good_vae.config.scaling_factor) + good_vae.config.shift_factor image = good_vae.decode(latents, return_dict=False)[0] self.maybe_free_model_hooks() torch.cuda.empty_cache() yield self.image_processor.postprocess(image, output_type=output_type)[0] def get_huggingface_safetensors(link: str) -> tuple[str, str, str, str, str]: """ Extracts LoRA information from a Hugging Face model card. Args: link: The Hugging Face model repository URL or ID (e.g., "user/repo" or "https://huggingface.co/user/repo"). Returns: A tuple containing: - title (str): The repository name. - repo (str): The full repository ID ("user/repo"). - path (str): The filename of the .safetensors file. - trigger_word (str): The instance prompt (trigger word) from the model card. - image_url (str): URL of a preview image, if found. Raises: Exception: If the provided link is not a valid FLUX LoRA repository. """ split_link = link.split("/") if len(split_link) == 2: model_card = ModelCard.load(link) base_model = model_card.data.get("base_model") print(base_model) # Allows Both FLUX.1-dev and FLUX.1-schnell if base_model not in ("black-forest-labs/FLUX.1-dev", "black-forest-labs/FLUX.1-schnell"): raise Exception("Flux LoRA Not Found!") image_path = model_card.data.get("widget", [{}])[0].get("output", {}).get("url", None) trigger_word = model_card.data.get("instance_prompt", "") image_url = f"https://huggingface.co/{link}/resolve/main/{image_path}" if image_path else None fs = HfFileSystem() try: list_of_files = fs.ls(link, detail=False) for file in list_of_files: if file.endswith(".safetensors"): safetensors_name = file.split("/")[-1] if not image_url and file.lower().endswith((".jpg", ".jpeg", ".png", ".webp")): image_elements = file.split("/") image_url = f"https://huggingface.co/{link}/resolve/main/{image_elements[-1]}" return split_link[1], link, safetensors_name, trigger_word, image_url # Return as soon as .safetensors is found except Exception as e: print(e) raise Exception(f"You didn't include a link neither a valid Hugging Face repository with a *.safetensors LoRA") # More concise exception else: #if the links is not complete raise Exception(f"You didn't include a link neither a valid Hugging Face repository with a *.safetensors LoRA") def check_custom_model(link: str) -> tuple[str, str, str, str, str]: """ Checks if the provided link is a Hugging Face URL and extracts LoRA info. Args: link: The URL or repository ID. Returns: The same tuple as `get_huggingface_safetensors`. """ if link.startswith("https://"): if link.startswith("https://huggingface.co") or link.startswith("https://www.huggingface.co"): link_split = link.split("huggingface.co/") return get_huggingface_safetensors(link_split[1]) return get_huggingface_safetensors(link) def create_lora_card(title: str, repo: str, trigger_word: str, image: str) -> str: """ Generates HTML for a LoRA card in the Gradio UI. """ trigger_word_info = ( f"Using: {trigger_word} as the trigger word" if trigger_word else "No trigger word found. If there's a trigger word, include it in your prompt" ) return f'''
Loaded custom LoRA:

{title}

{trigger_word_info}
''' def add_custom_lora(custom_lora: str, loras: list) -> tuple: """Adds a custom LoRA to the list of available LoRAs.""" if custom_lora: try: title, repo, path, trigger_word, image = check_custom_model(custom_lora) print(f"Loaded custom LoRA: {repo}") card = create_lora_card(title, repo, trigger_word, image) # Check if the repo is already in the list existing_item_index = next((index for (index, item) in enumerate(loras) if item['repo'] == repo), None) if existing_item_index is None: # Use 'is None' for comparison new_item = { "image": image, "title": title, "repo": repo, "weights": path, "trigger_word": trigger_word } print(new_item) loras.append(new_item) # Append to the passed-in loras list existing_item_index = len(loras) -1 #the index of new appended item return gr.update(visible=True, value=card), gr.update(visible=True), gr.Gallery(selected_index=None), f"Custom: {path}", existing_item_index, trigger_word except Exception as e: print(f"Error loading LoRA: {e}") # Debugging return gr.update(visible=True, value="Invalid LoRA"), gr.update(visible=False), gr.update(), "", None, "" else: return gr.update(visible=False), gr.update(visible=False), gr.update(), "", None, "" def remove_custom_lora() -> tuple: """Removes the custom LoRA from the UI.""" return gr.update(visible=False), gr.update(visible=False), gr.update(), "", None, "" def prepare_prompt(prompt: str, selected_index: Optional[int], loras: List[Dict]) -> str: """Combines the user prompt with the LoRA trigger word.""" if selected_index is None: raise gr.Error("You must select a LoRA before proceeding.🧨") selected_lora = loras[selected_index] trigger_word = selected_lora.get("trigger_word") # Use get() if trigger_word: trigger_position = selected_lora.get("trigger_position", "append") if trigger_position == "prepend": prompt_mash = f"{trigger_word} {prompt}" else: prompt_mash = f"{prompt} {trigger_word}" else: prompt_mash = prompt return prompt_mash def unload_lora_weights(pipe, pipe_i2i): """Unloads LoRA weights from both pipelines.""" if pipe is not None: pipe.unload_lora_weights() if pipe_i2i is not None: pipe_i2i.unload_lora_weights() def load_lora_weights_into_pipeline(pipe_to_use, lora_path: str, weight_name: Optional[str]): """Loads LoRA weights into the specified pipeline.""" pipe_to_use.load_lora_weights( lora_path, weight_name=weight_name, low_cpu_mem_usage=True ) def update_selection(evt: gr.SelectData, width, height, loras): """Updates the UI when a LoRA is selected from the gallery.""" selected_lora = loras[evt.index] new_placeholder = f"Type a prompt for {selected_lora['title']}" lora_repo = selected_lora["repo"] updated_text = f"### Selected: [{lora_repo}](https://huggingface.co/{lora_repo}) ✅" if "aspect" in selected_lora: if selected_lora["aspect"] == "portrait": width = 768 height = 1024 elif selected_lora["aspect"] == "landscape": width = 1024 height = 768 else: width = 1024 height = 1024 return ( gr.update(placeholder=new_placeholder), updated_text, evt.index, width, height, )