import os import gradio from PIL import Image from timeit import default_timer as timer from tensorflow import keras import torch from transformers import AutoTokenizer, TFAutoModelForSeq2SeqLM, create_optimizer, DataCollatorForSeq2Seq import numpy as np loaded_model = TFAutoModelForSeq2SeqLM.from_pretrained("runaksh/financial_summary_T5_base") loaded_tokenizer = AutoTokenizer.from_pretrained("runaksh/financial_summary_T5_base") # Function for generating summary def generate_summary(text,min_length=55,max_length=80): text = "summarize: "+text input = loaded_tokenizer(text,max_length=512,truncation=True,return_tensors='tf').input_ids op=loaded_model.generate(input,min_length=min_length,max_length=max_length) decoded_op = loaded_tokenizer.batch_decode(op,skip_special_tokens=True) return decoded_op title = "Financial News Summary" description = "Enter the news" # Gradio elements # Input from user in_prompt = gradio.components.Textbox(lines=2, label='Enter the News') # Output response out_response = gradio.components.Textbox(label='Summary') # Gradio interface to generate UI link iface = gradio.Interface(fn=generate_summary, inputs = in_prompt, outputs = out_response, title=title, description=description ) iface.launch(debug = True)