import gradio as gr import requests # GPT-J-6B API API_URL = "https://api-inference.huggingface.co/models/EleutherAI/gpt-j-6B" headers = {"Authorization": "Bearer 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"} prompt = """ me: I'm Twimbly Twombly. I live in California. I'm a robot.""" prev_chat = """ you: Hello. How are you? me: I'm fine""" examples = [["how are you?"], ["hello"]] def chat_generate(word): # print(f"**current reply") global prev_chat p = prompt + prev_chat + "\n" + "you: " + word.lower() + "\n" + "me: " print(f"*****Inside chat_generate - Prompt is :{p}") json_ = {"inputs": p, "parameters": { "top_p": 0.9, "temperature": 1.1, "max_new_tokens": 50, "return_full_text": False }} response = requests.post(API_URL, headers=headers, json=json_) output = response.json() output_tmp = output[0]['generated_text'] reply = output_tmp.split("you:")[0] # +"." print(f"Chat Response being returned is: {reply}") prev_chat = "you: " + word.lower() + "\n" + "me: " + reply return reply def text_to_image(reply): print("*****Inside Text_to_image") reply = " ".join(reply.split('\n')) reply = reply + " oil on canvas." steps, width, height, images, diversity = '50','256','256','1',15 img = gr.Interface.load("spaces/multimodalart/latentdiffusion")(reply, steps, width, height, images, diversity)[0] return img demo = gr.Blocks() with demo: gr.Markdown("

Twimbly Twombly

") gr.Markdown( "
Hi I'm Twimbly Twombly ready to talk to you.
" ) input_word = gr.Textbox(placeholder="Enter a word here to chat..") chat_txt = gr.Textbox(lines=1) # output_image = gr.Image(type="filepath", shape=(256,256)) b1 = gr.Button("Send") #b2 = gr.Button("Imagine") b1.click(chat_generate, input_word, chat_txt) #b2.click(text_to_image, chat_txt, output_image) #examples=examples demo.launch(enable_queue=True, debug=True)