print("Preparing for inference...") # noqa from rudalle.pipelines import generate_images from rudalle import get_rudalle_model, get_tokenizer, get_vae from huggingface_hub import hf_hub_url, cached_download import torch from io import BytesIO import base64 print(f"GPUs available: {torch.cuda.device_count()}") device = "cuda" if torch.cuda.is_available() else "cpu" fp16 = torch.cuda.is_available() file_dir = "./models" file_name = "pytorch_model.bin" config_file_url = hf_hub_url( repo_id="minimaxir/ai-generated-pokemon-rudalle", filename=file_name) cached_download(config_file_url, cache_dir=file_dir, force_filename=file_name) model = get_rudalle_model('Malevich', pretrained=False, fp16=fp16, device=device) model.load_state_dict(torch.load( f"{file_dir}/{file_name}", map_location=f"{'cuda:0' if torch.cuda.is_available() else 'cpu'}")) vae = get_vae().to(device) tokenizer = get_tokenizer() print("Ready for inference") def english_to_russian(english_string): word_map = { "grass": "трава", "fire": "Пожар", "water": "вода", "lightning": "молния", "fighting": "борьба", "psychic": "психический", "colorless": "бесцветный", "darkness": "темнота", "metal": "металл", "dragon": "Дракон", "fairy": "сказочный" } return word_map[english_string.lower()] def generate_image(prompt): if prompt.lower() in ['grass', 'fire', 'water', 'lightning', 'fighting', 'psychic', 'colorless', 'darkness', 'metal', 'dragon', 'fairy']: prompt = english_to_russian(prompt) result, _ = generate_images( prompt, tokenizer, model, vae, top_k=2048, images_num=1, top_p=0.995) buffer = BytesIO() result[0].save(buffer, format="PNG") base64_bytes = base64.b64encode(buffer.getvalue()) base64_string = base64_bytes.decode("UTF-8") return "data:image/png;base64," + base64_string