from fastai.vision.all import * import gradio as gr def predict(img): img = PILImage.create(img) pred, pred_idx, probs = learn_inf.predict(img) return {labels[i]: float(probs[i]) for i in range(len(labels))} learn_inf = load_learner('model/cat_dog_classifer.pkl') labels = learn_inf.dls.vocab gr.Interface(fn=predict, inputs=gr.inputs.Image(shape=(224, 224)), outputs=gr.outputs.Label(num_top_classes=3)).launch(share=True)