import time import os import joblib import streamlit as st import google.generativeai as genai from dotenv import load_dotenv load_dotenv() GOOGLE_API_KEY=os.environ.get('GOOGLE_API_KEY') genai.configure(api_key=GOOGLE_API_KEY) new_chat_id = f'{time.time()}' MODEL_ROLE = 'ai' AI_AVATAR_ICON = '⚙️' # # Create a data/ folder if it doesn't already exist try: os.mkdir('data/') except: # data/ folder already exists pass # Load past chats (if available) try: past_chats: dict = joblib.load('data/past_chats_list') except: past_chats = {} # Sidebar allows a list of past chats with st.sidebar: st.write('# Past Chats') if st.session_state.get('chat_id') is None: st.session_state.chat_id = st.selectbox( label='Pick a past chat', options=[new_chat_id] + list(past_chats.keys()), format_func=lambda x: past_chats.get(x, 'New Chat'), placeholder='_', ) else: # This will happen the first time AI response comes in st.session_state.chat_id = st.selectbox( label='Pick a past chat', options=[new_chat_id, st.session_state.chat_id] + list(past_chats.keys()), index=1, format_func=lambda x: past_chats.get(x, 'New Chat' if x != st.session_state.chat_id else st.session_state.chat_title), placeholder='_', ) # Save new chats after a message has been sent to AI # TODO: Give user a chance to name chat st.session_state.chat_title = f'ChatSession-{st.session_state.chat_id}' st.write('# Ask me Anything') # Chat history (allows to ask multiple questions) try: st.session_state.messages = joblib.load( f'data/{st.session_state.chat_id}-st_messages' ) st.session_state.gemini_history = joblib.load( f'data/{st.session_state.chat_id}-gemini_messages' ) print('old cache') except: st.session_state.messages = [] st.session_state.gemini_history = [] print('new_cache made') st.session_state.model = genai.GenerativeModel('gemini-pro') st.session_state.chat = st.session_state.model.start_chat( history=st.session_state.gemini_history, ) # Display chat messages from history on app rerun for message in st.session_state.messages: with st.chat_message( name=message['role'], avatar=message.get('avatar'), ): st.markdown(message['content']) # React to user input if prompt := st.chat_input('Your message here...'): # Save this as a chat for later if st.session_state.chat_id not in past_chats.keys(): past_chats[st.session_state.chat_id] = st.session_state.chat_title joblib.dump(past_chats, 'data/past_chats_list') # Display user message in chat message container with st.chat_message('user'): st.markdown(prompt) # Add user message to chat history st.session_state.messages.append( dict( role='user', content=prompt, ) ) ## Send message to AI response = st.session_state.chat.send_message( prompt, stream=True, ) # Display assistant response in chat message container with st.chat_message( name=MODEL_ROLE, avatar=AI_AVATAR_ICON, ): message_placeholder = st.empty() full_response = '' assistant_response = response # Streams in a chunk at a time for chunk in response: # Simulate stream of chunk # TODO: Chunk missing `text` if API stops mid-stream ("safety"?) for ch in chunk.text.split(' '): full_response += ch + ' ' time.sleep(0.05) # Rewrites with a cursor at end message_placeholder.write(full_response + '▌') # Write full message with placeholder message_placeholder.write(full_response) # Add assistant response to chat history st.session_state.messages.append( dict( role=MODEL_ROLE, content=st.session_state.chat.history[-1].parts[0].text, avatar=AI_AVATAR_ICON, ) ) st.session_state.gemini_history = st.session_state.chat.history # Save to file joblib.dump( st.session_state.messages, f'data/{st.session_state.chat_id}-st_messages', ) joblib.dump( st.session_state.gemini_history, f'data/{st.session_state.chat_id}-gemini_messages', )