EPiC / training /controlnet_datasets_camera_pcd_mask.py
Muhammad Taqi Raza
passing correct arguments
2d59f81
raw
history blame
8.1 kB
import os
import random
import json
import torch
import torch.nn as nn
import torchvision.transforms as transforms
import torchvision.transforms.functional as F
import numpy as np
from decord import VideoReader
from torch.utils.data.dataset import Dataset
from packaging import version as pver
class RandomHorizontalFlipWithPose(nn.Module):
def __init__(self, p=0.5):
super(RandomHorizontalFlipWithPose, self).__init__()
self.p = p
def get_flip_flag(self, n_image):
return torch.rand(n_image) < self.p
def forward(self, image, flip_flag=None):
n_image = image.shape[0]
if flip_flag is not None:
assert n_image == flip_flag.shape[0]
else:
flip_flag = self.get_flip_flag(n_image)
ret_images = []
for fflag, img in zip(flip_flag, image):
if fflag:
ret_images.append(F.hflip(img))
else:
ret_images.append(img)
return torch.stack(ret_images, dim=0)
class RealEstate10KPCDRenderDataset(Dataset):
def __init__(
self,
video_root_dir,
sample_n_frames=49,
image_size=[480, 720],
shuffle_frames=False,
hflip_p=0.0,
):
if hflip_p != 0.0:
use_flip = True
else:
use_flip = False
root_path = video_root_dir
self.root_path = root_path
self.sample_n_frames = sample_n_frames
self.source_video_root = os.path.join(self.root_path, 'videos')
self.mask_video_root = os.path.join(self.root_path, 'masked_videos')
self.captions_root = os.path.join(self.root_path, 'captions')
self.dataset = sorted([n.replace('.mp4','') for n in os.listdir(self.source_video_root)])
self.length = len(self.dataset)
sample_size = image_size
sample_size = tuple(sample_size) if not isinstance(sample_size, int) else (sample_size, sample_size)
self.sample_size = sample_size
if use_flip:
pixel_transforms = [transforms.Resize(sample_size),
RandomHorizontalFlipWithPose(hflip_p),
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], inplace=True)]
else:
pixel_transforms = [transforms.Resize(sample_size),
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], inplace=True)]
self.sample_wh_ratio = sample_size[1] / sample_size[0]
self.pixel_transforms = pixel_transforms
self.shuffle_frames = shuffle_frames
self.use_flip = use_flip
def load_video_reader(self, idx):
clip_name = self.dataset[idx]
video_path = os.path.join(self.source_video_root, clip_name + '.mp4')
video_reader = VideoReader(video_path)
mask_video_path = os.path.join(self.mask_video_root, clip_name + '.mp4')
mask_video_reader = VideoReader(mask_video_path)
caption_path = os.path.join(self.captions_root, clip_name + '.txt')
if os.path.exists(caption_path):
caption = open(caption_path, 'r').read().strip()
else:
caption = ''
return clip_name, video_reader, mask_video_reader, caption
def get_batch(self, idx):
clip_name, video_reader, mask_video_reader, video_caption = self.load_video_reader(idx)
if self.use_flip:
flip_flag = self.pixel_transforms[1].get_flip_flag(self.sample_n_frames)
else:
flip_flag = torch.zeros(self.sample_n_frames, dtype=torch.bool)
indices = np.arange(self.sample_n_frames)
pixel_values = torch.from_numpy(video_reader.get_batch(indices).asnumpy()).permute(0, 3, 1, 2).contiguous()
pixel_values = pixel_values / 255.
anchor_pixels = torch.from_numpy(mask_video_reader.get_batch(indices).asnumpy()).permute(0, 3, 1, 2).contiguous()
anchor_pixels = anchor_pixels / 255.
return pixel_values, anchor_pixels, video_caption, flip_flag, clip_name
def __len__(self):
return self.length
def __getitem__(self, idx):
while True:
try:
video, anchor_video, video_caption, flip_flag, clip_name = self.get_batch(idx)
break
except Exception as e:
idx = random.randint(0, self.length - 1)
if self.use_flip:
video = self.pixel_transforms[0](video)
video = self.pixel_transforms[1](video, flip_flag)
video = self.pixel_transforms[2](video)
anchor_video = self.pixel_transforms[0](anchor_video)
anchor_video = self.pixel_transforms[1](anchor_video, flip_flag)
anchor_video = self.pixel_transforms[2](anchor_video)
else:
for transform in self.pixel_transforms:
video = transform(video)
anchor_video = transform(anchor_video)
data = {
'video': video,
'anchor_video': anchor_video,
'caption': video_caption,
}
return data
class RealEstate10KPCDRenderCapEmbDataset(RealEstate10KPCDRenderDataset):
def __init__(
self,
video_root_dir,
text_embedding_path,
sample_n_frames=49,
image_size=[480, 720],
shuffle_frames=False,
hflip_p=0.0,
):
super().__init__(
video_root_dir,
sample_n_frames=sample_n_frames,
image_size=image_size,
shuffle_frames=shuffle_frames,
hflip_p=hflip_p,
)
self.text_embedding_path = text_embedding_path
self.mask_root = os.path.join(self.root_path, 'masks')
def get_batch(self, idx):
clip_name, video_reader, mask_video_reader, video_caption = self.load_video_reader(idx)
cap_emb_path = os.path.join(self.text_embedding_path, clip_name + '.pt')
video_caption_emb = torch.load(cap_emb_path, weights_only=True)
if self.use_flip:
flip_flag = self.pixel_transforms[1].get_flip_flag(self.sample_n_frames)
else:
flip_flag = torch.zeros(self.sample_n_frames, dtype=torch.bool)
indices = np.arange(self.sample_n_frames)
pixel_values = torch.from_numpy(video_reader.get_batch(indices).asnumpy()).permute(0, 3, 1, 2).contiguous()
pixel_values = pixel_values / 255.
anchor_pixels = torch.from_numpy(mask_video_reader.get_batch(indices).asnumpy()).permute(0, 3, 1, 2).contiguous()
anchor_pixels = anchor_pixels / 255.
try:
masks = np.load(os.path.join(self.mask_root, clip_name + '.npz'))['mask']*1.0
masks = torch.from_numpy(masks).unsqueeze(1)
except:
threshold = 0.1 # you can adjust this value
masks = (anchor_pixels.sum(dim=1, keepdim=True) < threshold).float()
return pixel_values, anchor_pixels, masks, video_caption_emb, flip_flag, clip_name
def __getitem__(self, idx):
while True:
try:
video, anchor_video, mask, video_caption_emb, flip_flag, clip_name = self.get_batch(idx)
break
except Exception as e:
idx = random.randint(0, self.length - 1)
if self.use_flip:
video = self.pixel_transforms[0](video)
video = self.pixel_transforms[1](video, flip_flag)
video = self.pixel_transforms[2](video)
anchor_video = self.pixel_transforms[0](anchor_video)
anchor_video = self.pixel_transforms[1](anchor_video, flip_flag)
anchor_video = self.pixel_transforms[2](anchor_video)
else:
for transform in self.pixel_transforms:
video = transform(video)
anchor_video = transform(anchor_video)
data = {
'video': video,
'anchor_video': anchor_video,
'caption_emb': video_caption_emb,
'mask': mask
}
return data