from transformers import pipeline, BitsAndBytesConfig import torch quantization_config = BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_compute_dtype=torch.bfloat16 ) # 13B version can be loaded with llava-hf/llava-1.5-13b-hf model_id = "llava-hf/llava-1.5-7b-hf" pipe = pipeline("image-to-text", model=model_id, model_kwargs={"quantization_config": quantization_config}) prompt = "USER: \nDescribe this picture\n​ASSISTANT: " outputs = pipe(image, prompt=prompt, generate_kwargs={"max_new_tokens": 200}) print(outputs[0]['generated_text']) def update_conversation(new_message, history, image): if image is None: return "Please upload an image first using the widget on the left" conversation_starting_from_image = [[user, assistant] for [user, assistant] in history if not assistant.startswith('Please')] prompt = "USER: \n" for i in range(len(history)): prompt+=history[i][0]+'\nASSISTANT: '+history[i][1]+"\nUSER: " prompt = prompt+new_message+'\nASSISTANT: ' outputs = pipe(image, prompt=prompt, generate_kwargs={"max_new_tokens": 200 #, "do_sample" : True, #"temperature" : 0.7 })[0]['generated_text'] return outputs[len(prompt)-6:] import gradio as gr with gr.Blocks() as demo: with gr.Row(): image = gr.Image(type='pil', interactive=True) gr.ChatInterface( update_conversation, additional_inputs=[image] ) demo.launch(debug=True)