import asyncio import glob import os import shutil import time import traceback import gradio as gr from dotenv import load_dotenv from langchain.chat_models import ChatOpenAI from langchain.embeddings import OpenAIEmbeddings from grader import Grader from grader_qa import GraderQA from ingest import ingest_canvas_discussions from utils import reset_folder load_dotenv() pickle_file = "vector_stores/canvas-discussions.pkl" index_file = "vector_stores/canvas-discussions.index" grading_model = 'gpt-4' qa_model = 'gpt-4' llm = ChatOpenAI(model_name=qa_model, temperature=0, verbose=True) embeddings = OpenAIEmbeddings(model='text-embedding-ada-002') grader = None grader_qa = None def add_text(history, text): print("Question asked: " + text) response = run_model(text) history = history + [(text, response)] print(history) return history, "" def run_model(text): global grader, grader_qa start_time = time.time() print("start time:" + str(start_time)) try: response = grader_qa.agent.run(text) except Exception as e: response = "I need a break. Please ask me again in a few minutes" print(traceback.format_exc()) sources = [] # for document in response['source_documents']: # sources.append(str(document.metadata)) source = ','.join(set(sources)) # response = response['answer'] + '\nSources: ' + str(len(sources)) end_time = time.time() # # If response contains string `SOURCES:`, then add a \n before `SOURCES` # if "SOURCES:" in response: # response = response.replace("SOURCES:", "\nSOURCES:") response = response + "\n\n" + "Time taken: " + str(end_time - start_time) print(response) print(sources) print("Time taken: " + str(end_time - start_time)) return response def set_model(history): history = get_first_message(history) return history def ingest(url, canvas_api_key, history): global grader, llm, embeddings text = f"Downloaded discussion data from {url} to start grading" ingest_canvas_discussions(url, canvas_api_key) grader = Grader(grading_model) response = "Ingested canvas data successfully" history = history + [(text, response)] return history def start_grading(history): global grader, grader_qa text = f"Start grading discussions from {url}" if grader: # if grader.llm.model_name != grading_model: # grader = Grader(grading_model) # Create a new event loop loop = asyncio.new_event_loop() asyncio.set_event_loop(loop) try: # Use the event loop to run the async function loop.run_until_complete(grader.run_chain()) grader_qa = GraderQA(grader, embeddings) response = "Grading done" finally: # Close the loop after use loop.close() else: response = "Please ingest data before grading" history = history + [(text, response)] return history def start_downloading(): files = glob.glob("output/*.csv") if files: file = files[0] return gr.outputs.File(file) else: return "File not found" def get_first_message(history): global grader_qa history = [(None, 'Get feedback on your canvas discussions. Add your discussion url and get your discussions graded in instantly.')] return get_grading_status(history) def get_grading_status(history): global grader, grader_qa # Check if grading is complete if os.path.isdir('output') and len(glob.glob("output/*.csv")) > 0 and len(glob.glob("docs/*.json")) > 0 and len( glob.glob("docs/*.html")) > 0: if not grader: grader = Grader(qa_model) grader_qa = GraderQA(grader, embeddings) elif not grader_qa: grader_qa = GraderQA(grader, embeddings) if len(history) == 1: history = history + [(None, 'Grading is already complete. You can now ask questions')] # enable_fields(False, False, False, False, True, True, True) # Check if data is ingested elif len(glob.glob("docs/*.json")) > 0 and len(glob.glob("docs/*.html")): if not grader_qa: grader = Grader(qa_model) if len(history) == 1: history = history + [(None, 'Canvas data is already ingested. You can grade discussions now')] # enable_fields(False, False, False, True, True, False, False) else: history = history + [(None, 'Please ingest data and start grading')] # enable_fields(True, True, True, True, True, False, False) return history # handle enable/disable of fields def enable_fields(url_status, canvas_api_key_status, submit_status, grade_status, download_status, chatbot_txt_status, chatbot_btn_status): url.update(interactive=url_status) canvas_api_key.update(interactive=canvas_api_key_status) submit.update(interactive=submit_status) grade.update(interactive=grade_status) download.update(interactive=download_status) txt.update(interactive=chatbot_txt_status) ask.update(interactive=chatbot_btn_status) if not chatbot_txt_status: txt.update(placeholder="Please grade discussions first") else: txt.update(placeholder="Ask a question") if not url_status: url.update(placeholder="Data already ingested") if not canvas_api_key_status: canvas_api_key.update(placeholder="Data already ingested") return url, canvas_api_key, submit, grade, download, txt, ask def reset_data(history): # Use shutil.rmtree() to delete output, docs, and vector_stores folders, reset grader and grader_qa, and get_grading_status, reset and return history global grader, grader_qa reset_folder('output') reset_folder('docs') reset_folder('vector_stores') grader = None grader_qa = None history = [(None, 'Data reset successfully')] return history def get_output_dir(orig_name): script_dir = os.path.dirname(os.path.abspath(__file__)) output_dir = os.path.join(script_dir, 'output', orig_name) return output_dir def upload_grading_results(file, history): global grader, grader_qa # Delete output folder and save the file in output folder if os.path.isdir('output'): shutil.rmtree('output') os.mkdir('output') if os.path.isdir('vector_stores'): shutil.rmtree('vector_stores') os.mkdir('vector_stores') # get current path path = os.path.join("output", os.path.basename(file.name)) # Copy the uploaded file from its temporary location to the desired location shutil.copyfile(file.name, path) grader = Grader(qa_model) grader_qa = GraderQA(grader, embeddings) history = [(None, 'Grading results uploaded successfully')] return history def bot(history): return get_grading_status(history) with gr.Blocks() as demo: gr.Markdown(f"