import cv2
import gradio as gr
import os
from PIL import Image, ImageFilter
import numpy as np
import torch
from torch.autograd import Variable
from torchvision import transforms
import torch.nn.functional as F
import gdown
import warnings
warnings.filterwarnings("ignore")
os.system("git clone https://github.com/xuebinqin/DIS")
os.system("mv DIS/IS-Net/* .")
# Project imports
from data_loader_cache import normalize, im_reader, im_preprocess
from models import *
# Helpers
device = 'cuda' if torch.cuda.is_available() else 'cpu'
# Download official weights
if not os.path.exists("saved_models"):
os.mkdir("saved_models")
os.system("mv isnet.pth saved_models/")
class GOSNormalize(object):
'''
Normalize the Image using torch.transforms
'''
def __init__(self, mean=[0.485,0.456,0.406], std=[0.229,0.224,0.225]):
self.mean = mean
self.std = std
def __call__(self,image):
image = normalize(image,self.mean,self.std)
return image
transform = transforms.Compose([GOSNormalize([0.5,0.5,0.5],[1.0,1.0,1.0])])
def load_image(im_path, hypar):
im = im_reader(im_path)
im, im_shp = im_preprocess(im, hypar["cache_size"])
im = torch.divide(im,255.0)
shape = torch.from_numpy(np.array(im_shp))
return transform(im).unsqueeze(0), shape.unsqueeze(0) # make a batch of image, shape
def build_model(hypar, device):
net = hypar["model"]
# Convert to half precision if specified
if hypar["model_digit"] == "half":
net.half()
for layer in net.modules():
if isinstance(layer, nn.BatchNorm2d):
layer.float()
net.to(device)
if hypar["restore_model"] != "":
net.load_state_dict(torch.load(hypar["model_path"] + "/" + hypar["restore_model"], map_location=device))
net.to(device)
net.eval()
return net
def predict(net, inputs_val, shapes_val, hypar, device):
'''
Given an Image, predict the mask
'''
net.eval()
if hypar["model_digit"] == "full":
inputs_val = inputs_val.type(torch.FloatTensor)
else:
inputs_val = inputs_val.type(torch.HalfTensor)
inputs_val_v = Variable(inputs_val, requires_grad=False).to(device) # wrap inputs in Variable
ds_val = net(inputs_val_v)[0] # list of 6 results
pred_val = ds_val[0][0, :, :, :] # B x 1 x H x W # we want the first one which is the most accurate prediction
## recover the prediction spatial size to the original image size
pred_val = torch.squeeze(F.upsample(torch.unsqueeze(pred_val, 0), (shapes_val[0][0], shapes_val[0][1]), mode='bilinear'))
ma = torch.max(pred_val)
mi = torch.min(pred_val)
pred_val = (pred_val - mi) / (ma - mi) # max = 1
if device == 'cuda': torch.cuda.empty_cache()
return (pred_val.detach().cpu().numpy() * 255).astype(np.uint8) # it is the mask we need
# Set Parameters
hypar = {} # parameters for inferencing
hypar["model_path"] = "./saved_models" # load trained weights from this path
hypar["restore_model"] = "isnet.pth" # name of the to-be-loaded weights
hypar["interm_sup"] = False # indicate if activate intermediate feature supervision
## choose floating point accuracy --
hypar["model_digit"] = "full" # indicates "half" or "full" accuracy of float number
hypar["seed"] = 0
hypar["cache_size"] = [1024, 1024] # cached input spatial resolution, can be configured into different size
## data augmentation parameters ---
hypar["input_size"] = [1024, 1024] # model input spatial size, usually use the same value hypar["cache_size"], which means we don't further resize the images
hypar["crop_size"] = [1024, 1024] # random crop size from the input, it is usually set as smaller than hypar["cache_size"], e.g., [920,920] for data augmentation
hypar["model"] = ISNetDIS()
# Build Model
net = build_model(hypar, device)
def refine_mask(mask):
"""
Softly refine the mask using Gaussian Blur and feathering for smooth transitions.
"""
# Apply Gaussian Blur to soften edges and make the mask more continuous
refined_mask = cv2.GaussianBlur(mask, (5, 5), 0)
# Feather the edges for a smoother transition between foreground and background
feathered_mask = cv2.copyMakeBorder(refined_mask, 10, 10, 10, 10, cv2.BORDER_CONSTANT, value=[255])
feathered_mask = cv2.GaussianBlur(feathered_mask, (21, 21), 0)
refined_mask = feathered_mask[10:-10, 10:-10] # Remove border
return refined_mask
def inference(image):
image_path = image
image_tensor, orig_size = load_image(image_path, hypar)
mask = predict(net, image_tensor, orig_size, hypar, device)
# Refine the mask using a softer approach
refined_mask = refine_mask(mask)
pil_mask = Image.fromarray(refined_mask).convert('L')
im_rgb = Image.open(image).convert("RGB")
im_rgba = im_rgb.copy()
im_rgba.putalpha(pil_mask)
return [im_rgba, pil_mask]
title = "Highly Accurate Dichotomous Image Segmentation"
description = "This is an unofficial demo for DIS, a model that can remove the background from a given image. To use it, simply upload your image, or click one of the examples to load them. Read more at the links below.
GitHub: https://github.com/xuebinqin/DIS
Telegram bot: https://t.me/restoration_photo_bot
[![](https://img.shields.io/twitter/follow/DoEvent?label=@DoEvent&style=social)](https://twitter.com/DoEvent)"
article = "