import cv2 import gradio as gr import os from PIL import Image, ImageFilter import numpy as np import torch from torch.autograd import Variable from torchvision import transforms import torch.nn.functional as F import gdown import warnings warnings.filterwarnings("ignore") os.system("git clone https://github.com/xuebinqin/DIS") os.system("mv DIS/IS-Net/* .") # Project imports from data_loader_cache import normalize, im_reader, im_preprocess from models import * # Helpers device = 'cuda' if torch.cuda.is_available() else 'cpu' # Download official weights if not os.path.exists("saved_models"): os.mkdir("saved_models") os.system("mv isnet.pth saved_models/") class GOSNormalize(object): ''' Normalize the Image using torch.transforms ''' def __init__(self, mean=[0.485,0.456,0.406], std=[0.229,0.224,0.225]): self.mean = mean self.std = std def __call__(self,image): image = normalize(image,self.mean,self.std) return image transform = transforms.Compose([GOSNormalize([0.5,0.5,0.5],[1.0,1.0,1.0])]) def load_image(im_path, hypar): im = im_reader(im_path) im, im_shp = im_preprocess(im, hypar["cache_size"]) im = torch.divide(im,255.0) shape = torch.from_numpy(np.array(im_shp)) return transform(im).unsqueeze(0), shape.unsqueeze(0) # make a batch of image, shape def build_model(hypar, device): net = hypar["model"] # Convert to half precision if specified if hypar["model_digit"] == "half": net.half() for layer in net.modules(): if isinstance(layer, nn.BatchNorm2d): layer.float() net.to(device) if hypar["restore_model"] != "": net.load_state_dict(torch.load(hypar["model_path"] + "/" + hypar["restore_model"], map_location=device)) net.to(device) net.eval() return net def predict(net, inputs_val, shapes_val, hypar, device): ''' Given an Image, predict the mask ''' net.eval() if hypar["model_digit"] == "full": inputs_val = inputs_val.type(torch.FloatTensor) else: inputs_val = inputs_val.type(torch.HalfTensor) inputs_val_v = Variable(inputs_val, requires_grad=False).to(device) # wrap inputs in Variable ds_val = net(inputs_val_v)[0] # list of 6 results pred_val = ds_val[0][0, :, :, :] # B x 1 x H x W # we want the first one which is the most accurate prediction ## recover the prediction spatial size to the original image size pred_val = torch.squeeze(F.upsample(torch.unsqueeze(pred_val, 0), (shapes_val[0][0], shapes_val[0][1]), mode='bilinear')) ma = torch.max(pred_val) mi = torch.min(pred_val) pred_val = (pred_val - mi) / (ma - mi) # max = 1 if device == 'cuda': torch.cuda.empty_cache() return (pred_val.detach().cpu().numpy() * 255).astype(np.uint8) # it is the mask we need # Set Parameters hypar = {} # parameters for inferencing hypar["model_path"] = "./saved_models" # load trained weights from this path hypar["restore_model"] = "isnet.pth" # name of the to-be-loaded weights hypar["interm_sup"] = False # indicate if activate intermediate feature supervision ## choose floating point accuracy -- hypar["model_digit"] = "full" # indicates "half" or "full" accuracy of float number hypar["seed"] = 0 hypar["cache_size"] = [1024, 1024] # cached input spatial resolution, can be configured into different size ## data augmentation parameters --- hypar["input_size"] = [1024, 1024] # model input spatial size, usually use the same value hypar["cache_size"], which means we don't further resize the images hypar["crop_size"] = [1024, 1024] # random crop size from the input, it is usually set as smaller than hypar["cache_size"], e.g., [920,920] for data augmentation hypar["model"] = ISNetDIS() # Build Model net = build_model(hypar, device) def refine_mask(mask): """ Softly refine the mask using Gaussian Blur and feathering for smooth transitions. """ # Apply Gaussian Blur to soften edges and make the mask more continuous refined_mask = cv2.GaussianBlur(mask, (5, 5), 0) # Feather the edges for a smoother transition between foreground and background feathered_mask = cv2.copyMakeBorder(refined_mask, 10, 10, 10, 10, cv2.BORDER_CONSTANT, value=[255]) feathered_mask = cv2.GaussianBlur(feathered_mask, (21, 21), 0) refined_mask = feathered_mask[10:-10, 10:-10] # Remove border return refined_mask def inference(image): image_path = image image_tensor, orig_size = load_image(image_path, hypar) mask = predict(net, image_tensor, orig_size, hypar, device) # Refine the mask using a softer approach refined_mask = refine_mask(mask) pil_mask = Image.fromarray(refined_mask).convert('L') im_rgb = Image.open(image).convert("RGB") im_rgba = im_rgb.copy() im_rgba.putalpha(pil_mask) return [im_rgba, pil_mask] title = "Highly Accurate Dichotomous Image Segmentation" description = "This is an unofficial demo for DIS, a model that can remove the background from a given image. To use it, simply upload your image, or click one of the examples to load them. Read more at the links below.
GitHub: https://github.com/xuebinqin/DIS
Telegram bot: https://t.me/restoration_photo_bot
[![](https://img.shields.io/twitter/follow/DoEvent?label=@DoEvent&style=social)](https://twitter.com/DoEvent)" article = "
visitor badge
" interface = gr.Interface( fn=inference, inputs=gr.Image(type='filepath'), outputs=["image", "image"], examples=[['robot.png'], ['ship.png']], title=title, description=description, article=article, allow_flagging='never', cache_examples=False, delete_cache=(4000, 4000), ).queue().launch(show_error=True)