# Copyright (c) OpenMMLab. All rights reserved. import mmcv import torch.nn as nn from ..builder import LOSSES from .utils import weighted_loss @mmcv.jit(derivate=True, coderize=True) @weighted_loss def gaussian_focal_loss(pred, gaussian_target, alpha=2.0, gamma=4.0): """`Focal Loss `_ for targets in gaussian distribution. Args: pred (torch.Tensor): The prediction. gaussian_target (torch.Tensor): The learning target of the prediction in gaussian distribution. alpha (float, optional): A balanced form for Focal Loss. Defaults to 2.0. gamma (float, optional): The gamma for calculating the modulating factor. Defaults to 4.0. """ eps = 1e-12 pos_weights = gaussian_target.eq(1) neg_weights = (1 - gaussian_target).pow(gamma) pos_loss = -(pred + eps).log() * (1 - pred).pow(alpha) * pos_weights neg_loss = -(1 - pred + eps).log() * pred.pow(alpha) * neg_weights return pos_loss + neg_loss @LOSSES.register_module() class GaussianFocalLoss(nn.Module): """GaussianFocalLoss is a variant of focal loss. More details can be found in the `paper `_ Code is modified from `kp_utils.py `_ # noqa: E501 Please notice that the target in GaussianFocalLoss is a gaussian heatmap, not 0/1 binary target. Args: alpha (float): Power of prediction. gamma (float): Power of target for negative samples. reduction (str): Options are "none", "mean" and "sum". loss_weight (float): Loss weight of current loss. """ def __init__(self, alpha=2.0, gamma=4.0, reduction='mean', loss_weight=1.0): super(GaussianFocalLoss, self).__init__() self.alpha = alpha self.gamma = gamma self.reduction = reduction self.loss_weight = loss_weight def forward(self, pred, target, weight=None, avg_factor=None, reduction_override=None): """Forward function. Args: pred (torch.Tensor): The prediction. target (torch.Tensor): The learning target of the prediction in gaussian distribution. weight (torch.Tensor, optional): The weight of loss for each prediction. Defaults to None. avg_factor (int, optional): Average factor that is used to average the loss. Defaults to None. reduction_override (str, optional): The reduction method used to override the original reduction method of the loss. Defaults to None. """ assert reduction_override in (None, 'none', 'mean', 'sum') reduction = ( reduction_override if reduction_override else self.reduction) loss_reg = self.loss_weight * gaussian_focal_loss( pred, target, weight, alpha=self.alpha, gamma=self.gamma, reduction=reduction, avg_factor=avg_factor) return loss_reg