# Copyright (c) OpenMMLab. All rights reserved. import math import torch import torch.nn as nn from mmcv.cnn import ConvModule, DepthwiseSeparableConvModule from mmcv.runner import BaseModule from torch.nn.modules.batchnorm import _BatchNorm from ..builder import BACKBONES from ..utils import CSPLayer class Focus(nn.Module): """Focus width and height information into channel space. Args: in_channels (int): The input channels of this Module. out_channels (int): The output channels of this Module. kernel_size (int): The kernel size of the convolution. Default: 1 stride (int): The stride of the convolution. Default: 1 conv_cfg (dict): Config dict for convolution layer. Default: None, which means using conv2d. norm_cfg (dict): Config dict for normalization layer. Default: dict(type='BN', momentum=0.03, eps=0.001). act_cfg (dict): Config dict for activation layer. Default: dict(type='Swish'). """ def __init__(self, in_channels, out_channels, kernel_size=1, stride=1, conv_cfg=None, norm_cfg=dict(type='BN', momentum=0.03, eps=0.001), act_cfg=dict(type='Swish')): super().__init__() self.conv = ConvModule( in_channels * 4, out_channels, kernel_size, stride, padding=(kernel_size - 1) // 2, conv_cfg=conv_cfg, norm_cfg=norm_cfg, act_cfg=act_cfg) def forward(self, x): # shape of x (b,c,w,h) -> y(b,4c,w/2,h/2) patch_top_left = x[..., ::2, ::2] patch_top_right = x[..., ::2, 1::2] patch_bot_left = x[..., 1::2, ::2] patch_bot_right = x[..., 1::2, 1::2] x = torch.cat( ( patch_top_left, patch_bot_left, patch_top_right, patch_bot_right, ), dim=1, ) return self.conv(x) class SPPBottleneck(BaseModule): """Spatial pyramid pooling layer used in YOLOv3-SPP. Args: in_channels (int): The input channels of this Module. out_channels (int): The output channels of this Module. kernel_sizes (tuple[int]): Sequential of kernel sizes of pooling layers. Default: (5, 9, 13). conv_cfg (dict): Config dict for convolution layer. Default: None, which means using conv2d. norm_cfg (dict): Config dict for normalization layer. Default: dict(type='BN'). act_cfg (dict): Config dict for activation layer. Default: dict(type='Swish'). init_cfg (dict or list[dict], optional): Initialization config dict. Default: None. """ def __init__(self, in_channels, out_channels, kernel_sizes=(5, 9, 13), conv_cfg=None, norm_cfg=dict(type='BN', momentum=0.03, eps=0.001), act_cfg=dict(type='Swish'), init_cfg=None): super().__init__(init_cfg) mid_channels = in_channels // 2 self.conv1 = ConvModule( in_channels, mid_channels, 1, stride=1, conv_cfg=conv_cfg, norm_cfg=norm_cfg, act_cfg=act_cfg) self.poolings = nn.ModuleList([ nn.MaxPool2d(kernel_size=ks, stride=1, padding=ks // 2) for ks in kernel_sizes ]) conv2_channels = mid_channels * (len(kernel_sizes) + 1) self.conv2 = ConvModule( conv2_channels, out_channels, 1, conv_cfg=conv_cfg, norm_cfg=norm_cfg, act_cfg=act_cfg) def forward(self, x): x = self.conv1(x) x = torch.cat([x] + [pooling(x) for pooling in self.poolings], dim=1) x = self.conv2(x) return x @BACKBONES.register_module() class CSPDarknet(BaseModule): """CSP-Darknet backbone used in YOLOv5 and YOLOX. Args: arch (str): Architecture of CSP-Darknet, from {P5, P6}. Default: P5. deepen_factor (float): Depth multiplier, multiply number of blocks in CSP layer by this amount. Default: 1.0. widen_factor (float): Width multiplier, multiply number of channels in each layer by this amount. Default: 1.0. out_indices (Sequence[int]): Output from which stages. Default: (2, 3, 4). frozen_stages (int): Stages to be frozen (stop grad and set eval mode). -1 means not freezing any parameters. Default: -1. use_depthwise (bool): Whether to use depthwise separable convolution. Default: False. arch_ovewrite(list): Overwrite default arch settings. Default: None. spp_kernal_sizes: (tuple[int]): Sequential of kernel sizes of SPP layers. Default: (5, 9, 13). conv_cfg (dict): Config dict for convolution layer. Default: None. norm_cfg (dict): Dictionary to construct and config norm layer. Default: dict(type='BN', requires_grad=True). act_cfg (dict): Config dict for activation layer. Default: dict(type='LeakyReLU', negative_slope=0.1). norm_eval (bool): Whether to set norm layers to eval mode, namely, freeze running stats (mean and var). Note: Effect on Batch Norm and its variants only. init_cfg (dict or list[dict], optional): Initialization config dict. Default: None. Example: >>> from mmdet.models import CSPDarknet >>> import torch >>> self = CSPDarknet(depth=53) >>> self.eval() >>> inputs = torch.rand(1, 3, 416, 416) >>> level_outputs = self.forward(inputs) >>> for level_out in level_outputs: ... print(tuple(level_out.shape)) ... (1, 256, 52, 52) (1, 512, 26, 26) (1, 1024, 13, 13) """ # From left to right: # in_channels, out_channels, num_blocks, add_identity, use_spp arch_settings = { 'P5': [[64, 128, 3, True, False], [128, 256, 9, True, False], [256, 512, 9, True, False], [512, 1024, 3, False, True]], 'P6': [[64, 128, 3, True, False], [128, 256, 9, True, False], [256, 512, 9, True, False], [512, 768, 3, True, False], [768, 1024, 3, False, True]] } def __init__(self, arch='P5', deepen_factor=1.0, widen_factor=1.0, out_indices=(2, 3, 4), frozen_stages=-1, use_depthwise=False, arch_ovewrite=None, spp_kernal_sizes=(5, 9, 13), conv_cfg=None, norm_cfg=dict(type='BN', momentum=0.03, eps=0.001), act_cfg=dict(type='Swish'), norm_eval=False, init_cfg=dict( type='Kaiming', layer='Conv2d', a=math.sqrt(5), distribution='uniform', mode='fan_in', nonlinearity='leaky_relu')): super().__init__(init_cfg) arch_setting = self.arch_settings[arch] if arch_ovewrite: arch_setting = arch_ovewrite assert set(out_indices).issubset( i for i in range(len(arch_setting) + 1)) if frozen_stages not in range(-1, len(arch_setting) + 1): raise ValueError('frozen_stages must be in range(-1, ' 'len(arch_setting) + 1). But received ' f'{frozen_stages}') self.out_indices = out_indices self.frozen_stages = frozen_stages self.use_depthwise = use_depthwise self.norm_eval = norm_eval conv = DepthwiseSeparableConvModule if use_depthwise else ConvModule self.stem = Focus( 3, int(arch_setting[0][0] * widen_factor), kernel_size=3, conv_cfg=conv_cfg, norm_cfg=norm_cfg, act_cfg=act_cfg) self.layers = ['stem'] for i, (in_channels, out_channels, num_blocks, add_identity, use_spp) in enumerate(arch_setting): in_channels = int(in_channels * widen_factor) out_channels = int(out_channels * widen_factor) num_blocks = max(round(num_blocks * deepen_factor), 1) stage = [] conv_layer = conv( in_channels, out_channels, 3, stride=2, padding=1, conv_cfg=conv_cfg, norm_cfg=norm_cfg, act_cfg=act_cfg) stage.append(conv_layer) if use_spp: spp = SPPBottleneck( out_channels, out_channels, kernel_sizes=spp_kernal_sizes, conv_cfg=conv_cfg, norm_cfg=norm_cfg, act_cfg=act_cfg) stage.append(spp) csp_layer = CSPLayer( out_channels, out_channels, num_blocks=num_blocks, add_identity=add_identity, use_depthwise=use_depthwise, conv_cfg=conv_cfg, norm_cfg=norm_cfg, act_cfg=act_cfg) stage.append(csp_layer) self.add_module(f'stage{i + 1}', nn.Sequential(*stage)) self.layers.append(f'stage{i + 1}') def _freeze_stages(self): if self.frozen_stages >= 0: for i in range(self.frozen_stages + 1): m = getattr(self, self.layers[i]) m.eval() for param in m.parameters(): param.requires_grad = False def train(self, mode=True): super(CSPDarknet, self).train(mode) self._freeze_stages() if mode and self.norm_eval: for m in self.modules(): if isinstance(m, _BatchNorm): m.eval() def forward(self, x): outs = [] for i, layer_name in enumerate(self.layers): layer = getattr(self, layer_name) x = layer(x) if i in self.out_indices: outs.append(x) return tuple(outs)