from fastai.vision.all import * import gradio as gr learn=load_learner('model.pkl') categories = ['chimpanzee','gorilla','human', 'orangutan'] def classify_image(img): pred,idx,probs = learn.predict(img) return dict(zip(categories, map(float,probs))) image = gr.Image(shape=(192, 192)) lable = gr.Label() examples = ['chimpanzee.jpg', 'gorilla.jpg', 'human.jpg', 'orangutan.jpg'] description = '''This project is inspired from the first lesson in the fast.ai course. Choose an example photo or upload a photo of a Great Ape (Human, Chimpanzee, Gorilla, or Orangutan) to classify the Great Ape. The classifier was trained using the fastai library to fine tune a ResNet-18 CNN model to classify Great Apes.''' intf = gr.Interface(fn=classify_image, inputs=image, outputs=lable, examples=examples, title='Great Apes Classifier', description=description) intf.launch(inline=False)