import gradio as gr from collections import Counter from sklearn.cluster import KMeans from matplotlib import colors import matplotlib.pyplot as plt import numpy as np import cv2 def rgb_to_hex(rgb_color): hex_color = "#" for i in rgb_color: hex_color += ("{:02x}".format(int(i))) return hex_color def preprocess(raw): image = cv2.resize(raw, (900, 600), interpolation = cv2.INTER_AREA) image = image.reshape(image.shape[0]*image.shape[1], 3) return image def analyze(img): modified_image = preprocess(img) n_cluster = 6 clf = KMeans(n_clusters = n_cluster) color_labels = clf.fit_predict(modified_image) center_colors = clf.cluster_centers_ counts = Counter(color_labels) ordered_colors = [center_colors[i] for i in counts.keys()] hex_colors = [rgb_to_hex(ordered_colors[i]) for i in counts.keys()] plot = plt.figure(figsize = (12, 8)) plt.pie(counts.values(), labels = hex_colors, autopct='%1.1f%%', colors = hex_colors) plt.savefig("color_classifier_pie.png") print(str(n_cluster) + " the most dominant colors:\n") for color in hex_colors: print(color) return plot color_picker = gr.Interface(fn=analyze, inputs="image", outputs="plot") color_picker.launch()