# Import necessary libraries import streamlit as st import joblib # Load the trained model model = joblib.load("./model-3.joblib") # Define function to predict heart disease def predict_heart_disease(sex, exang, cp_1, cp_2, cp_4, slope_1, slope_2, thal_3, thal_7): print([[sex, exang, cp_1, cp_2, cp_4, slope_1, slope_2, thal_3, thal_7]]) prediction = model.predict([[sex, exang, cp_1, cp_2, cp_4, slope_1, slope_2, thal_3, thal_7]]) return prediction # Create the Streamlit web application def main(): # Set title and description st.title("Heart Disease Prediction") st.write("This app predicts the presence of heart disease based on selected attributes.") # Design user interface sex = st.selectbox("Sex", ["Female", "Male"]) exang = st.selectbox("Exercise Induced Angina", ["No", "Yes"]) cp = st.selectbox("Chest Pain Type", ["Typical Angina", "Atypical Angina", "Non-Anginal Pain", "Asymptomatic"]) slope = st.selectbox("Slope of Peak Exercise ST Segment", ["Upsloping", "Flat", "Downsloping"]) thal = st.selectbox("Thal", ["Normal", "Fixed Defect", "Reversible Defect"]) # Map selected options to numerical values sex_mapping = {"Female": 0, "Male": 1} exang_mapping = {"No": 0, "Yes": 1} cp_1_mapping = {"Typical Angina": 1, "Atypical Angina": 0, "Non-Anginal Pain": 0, "Asymptomatic": 0} cp_2_mapping = {"Typical Angina": 0, "Atypical Angina": 1, "Non-Anginal Pain": 0, "Asymptomatic": 0} cp_4_mapping = {"Typical Angina": 0, "Atypical Angina": 0, "Non-Anginal Pain": 0, "Asymptomatic": 1} slope_1_mapping = {"Upsloping": 1, "Flat": 0, "Downsloping": 0} slope_2_mapping = {"Upsloping": 0, "Flat": 1, "Downsloping": 0} thal_3_mapping = {"Normal": 1, "Fixed Defect": 0, "Reversible Defect": 0} thal_7_mapping = {"Normal": 0, "Fixed Defect": 0, "Reversible Defect": 1} # Predict button if st.button("Predict"): result = predict_heart_disease(sex_mapping[sex], exang_mapping[exang], cp_1_mapping[cp], cp_2_mapping[cp], cp_4_mapping[cp], slope_1_mapping[slope], slope_2_mapping[slope], thal_3_mapping[thal], thal_7_mapping[thal]) if result == 1: st.write("The model predicts that the patient has heart disease.") else: st.write("The model predicts that the patient does not have heart disease.") # Run the Streamlit app if __name__ == "__main__": main()