import requests import json import ast def prompt_generator(question: str, db_knn: dict) -> tuple[str, str, str]: context = "" references = "" for i in range(len(db_knn['matches'])): data = db_knn['matches'][i]['metadata']['data'] context += (data + "\n") data = ast.literal_eval(data) if data['type'] == "function" or data['type'] == "class": line_number = f"#L{data['lineno'][0]}-L{data['lineno'][1]}" references += ("").replace("fury-0.10.0", "v0.10.0") if data.get("function_name"): references += f"\tFunction Name: {data.get('function_name')}" elif data.get("class_name"): references += f"\tClass Name: {data.get('class_name')}" elif data['type'] == 'rst': references += f"\tDocumentation: {data['path'].split("/")[-1]}" elif data['type'] == 'documentation_examples': references += f"\tDocumentation: {data['path'].split("/")[-1]}" references += "\n" prompt = f""" You are a senior developer. Answer the users question based on the context provided. Question: {question} Context: {context} """ return prompt, context, references def groq_llm_output(question: str, db_knn: dict, llm: str, stream: bool) -> tuple[str, str]: """ Returns output from the LLM using the given user-question and retrived context """ URL_LLM = 'https://robinroy03-fury-bot.hf.space' prompt, context, references = prompt_generator(question, db_knn) obj = { 'model': llm, 'prompt': prompt, 'stream': stream } response = requests.post(URL_LLM + "/api/groq/generate", json=obj) response_json = json.loads(response.text) return (response_json['choices'][0]['message']['content'], references) def google_llm_output(question: str, db_knn: dict, llm: str, stream: bool) -> tuple[str, str]: URL_LLM = 'https://robinroy03-fury-bot.hf.space' prompt, context, references = prompt_generator(question, db_knn) obj = { 'model': llm, 'prompt': prompt, 'stream': stream } response = requests.post(URL_LLM + "/api/google/generate", json=obj) response_json = json.loads(response.text) return (response_json['candidates'][0]['content']['parts'][0]['text'], references) def embedding_output(message: str) -> list: """ Returns embeddings for the given message rtype: list of embeddings. Length depends on the model. """ URL_EMBEDDING = 'https://robinroy03-fury-embeddings-endpoint.hf.space' response = requests.post(URL_EMBEDDING + "/embedding", json={"text": message}) response_json = json.loads(response.text) return response_json['output'] def db_output(embedding: list, knn: int) -> dict: """ Returns the KNN results. rtype: JSON """ URL_DB = 'https://robinroy03-fury-db-endpoint.hf.space' response = requests.post(URL_DB + "/query", json={"embeddings": embedding, "knn": knn}) response_json = json.loads(response.text) return response_json def ollama_llm_output(question: str, db_knn: dict, llm: str, stream: bool) -> tuple[str, str]: URL_LLM = 'https://robinroy03-ollama-server-backend.hf.space' # URL_LLM = "http://localhost:11434" prompt, context, references = prompt_generator(question, db_knn) obj = { "model": llm, "prompt": question, "stream": stream } try: response = requests.post(URL_LLM + "/api/generate", json=obj) except Exception as e: print(e) return {"error": e} response_json = json.loads(response.text) return response_json, references