Sanketh Kumar
commited on
Commit
·
9590c46
1
Parent(s):
0b0cdd6
Manually reformatted files
Browse files- .github/workflows/linting.yaml +2 -2
- .gitignore +1 -1
- README.md +6 -6
- examples/graph_visual_with_html.py +3 -3
- examples/graph_visual_with_neo4j.py +19 -11
- examples/lightrag_openai_compatible_demo.py +20 -7
- examples/lightrag_siliconcloud_demo.py +1 -1
- examples/vram_management_demo.py +29 -7
- lightrag/llm.py +63 -38
- lightrag/utils.py +29 -17
- requirements.txt +2 -2
.github/workflows/linting.yaml
CHANGED
|
@@ -15,7 +15,7 @@ jobs:
|
|
| 15 |
steps:
|
| 16 |
- name: Checkout code
|
| 17 |
uses: actions/checkout@v2
|
| 18 |
-
|
| 19 |
- name: Set up Python
|
| 20 |
uses: actions/setup-python@v2
|
| 21 |
with:
|
|
@@ -27,4 +27,4 @@ jobs:
|
|
| 27 |
pip install pre-commit
|
| 28 |
|
| 29 |
- name: Run pre-commit
|
| 30 |
-
run: pre-commit run --all-files
|
|
|
|
| 15 |
steps:
|
| 16 |
- name: Checkout code
|
| 17 |
uses: actions/checkout@v2
|
| 18 |
+
|
| 19 |
- name: Set up Python
|
| 20 |
uses: actions/setup-python@v2
|
| 21 |
with:
|
|
|
|
| 27 |
pip install pre-commit
|
| 28 |
|
| 29 |
- name: Run pre-commit
|
| 30 |
+
run: pre-commit run --all-files
|
.gitignore
CHANGED
|
@@ -4,4 +4,4 @@ dickens/
|
|
| 4 |
book.txt
|
| 5 |
lightrag-dev/
|
| 6 |
.idea/
|
| 7 |
-
dist/
|
|
|
|
| 4 |
book.txt
|
| 5 |
lightrag-dev/
|
| 6 |
.idea/
|
| 7 |
+
dist/
|
README.md
CHANGED
|
@@ -58,8 +58,8 @@ from lightrag.llm import gpt_4o_mini_complete, gpt_4o_complete
|
|
| 58 |
|
| 59 |
#########
|
| 60 |
# Uncomment the below two lines if running in a jupyter notebook to handle the async nature of rag.insert()
|
| 61 |
-
# import nest_asyncio
|
| 62 |
-
# nest_asyncio.apply()
|
| 63 |
#########
|
| 64 |
|
| 65 |
WORKING_DIR = "./dickens"
|
|
@@ -157,7 +157,7 @@ rag = LightRAG(
|
|
| 157 |
|
| 158 |
<details>
|
| 159 |
<summary> Using Ollama Models </summary>
|
| 160 |
-
|
| 161 |
* If you want to use Ollama models, you only need to set LightRAG as follows:
|
| 162 |
|
| 163 |
```python
|
|
@@ -328,8 +328,8 @@ def main():
|
|
| 328 |
SET e.entity_type = node.entity_type,
|
| 329 |
e.description = node.description,
|
| 330 |
e.source_id = node.source_id,
|
| 331 |
-
e.displayName = node.id
|
| 332 |
-
REMOVE e:Entity
|
| 333 |
WITH e, node
|
| 334 |
CALL apoc.create.addLabels(e, [node.entity_type]) YIELD node AS labeledNode
|
| 335 |
RETURN count(*)
|
|
@@ -382,7 +382,7 @@ def main():
|
|
| 382 |
|
| 383 |
except Exception as e:
|
| 384 |
print(f"Error occurred: {e}")
|
| 385 |
-
|
| 386 |
finally:
|
| 387 |
driver.close()
|
| 388 |
|
|
|
|
| 58 |
|
| 59 |
#########
|
| 60 |
# Uncomment the below two lines if running in a jupyter notebook to handle the async nature of rag.insert()
|
| 61 |
+
# import nest_asyncio
|
| 62 |
+
# nest_asyncio.apply()
|
| 63 |
#########
|
| 64 |
|
| 65 |
WORKING_DIR = "./dickens"
|
|
|
|
| 157 |
|
| 158 |
<details>
|
| 159 |
<summary> Using Ollama Models </summary>
|
| 160 |
+
|
| 161 |
* If you want to use Ollama models, you only need to set LightRAG as follows:
|
| 162 |
|
| 163 |
```python
|
|
|
|
| 328 |
SET e.entity_type = node.entity_type,
|
| 329 |
e.description = node.description,
|
| 330 |
e.source_id = node.source_id,
|
| 331 |
+
e.displayName = node.id
|
| 332 |
+
REMOVE e:Entity
|
| 333 |
WITH e, node
|
| 334 |
CALL apoc.create.addLabels(e, [node.entity_type]) YIELD node AS labeledNode
|
| 335 |
RETURN count(*)
|
|
|
|
| 382 |
|
| 383 |
except Exception as e:
|
| 384 |
print(f"Error occurred: {e}")
|
| 385 |
+
|
| 386 |
finally:
|
| 387 |
driver.close()
|
| 388 |
|
examples/graph_visual_with_html.py
CHANGED
|
@@ -3,7 +3,7 @@ from pyvis.network import Network
|
|
| 3 |
import random
|
| 4 |
|
| 5 |
# Load the GraphML file
|
| 6 |
-
G = nx.read_graphml(
|
| 7 |
|
| 8 |
# Create a Pyvis network
|
| 9 |
net = Network(notebook=True)
|
|
@@ -13,7 +13,7 @@ net.from_nx(G)
|
|
| 13 |
|
| 14 |
# Add colors to nodes
|
| 15 |
for node in net.nodes:
|
| 16 |
-
node[
|
| 17 |
|
| 18 |
# Save and display the network
|
| 19 |
-
net.show(
|
|
|
|
| 3 |
import random
|
| 4 |
|
| 5 |
# Load the GraphML file
|
| 6 |
+
G = nx.read_graphml("./dickens/graph_chunk_entity_relation.graphml")
|
| 7 |
|
| 8 |
# Create a Pyvis network
|
| 9 |
net = Network(notebook=True)
|
|
|
|
| 13 |
|
| 14 |
# Add colors to nodes
|
| 15 |
for node in net.nodes:
|
| 16 |
+
node["color"] = "#{:06x}".format(random.randint(0, 0xFFFFFF))
|
| 17 |
|
| 18 |
# Save and display the network
|
| 19 |
+
net.show("knowledge_graph.html")
|
examples/graph_visual_with_neo4j.py
CHANGED
|
@@ -13,6 +13,7 @@ NEO4J_URI = "bolt://localhost:7687"
|
|
| 13 |
NEO4J_USERNAME = "neo4j"
|
| 14 |
NEO4J_PASSWORD = "your_password"
|
| 15 |
|
|
|
|
| 16 |
def convert_xml_to_json(xml_path, output_path):
|
| 17 |
"""Converts XML file to JSON and saves the output."""
|
| 18 |
if not os.path.exists(xml_path):
|
|
@@ -21,7 +22,7 @@ def convert_xml_to_json(xml_path, output_path):
|
|
| 21 |
|
| 22 |
json_data = xml_to_json(xml_path)
|
| 23 |
if json_data:
|
| 24 |
-
with open(output_path,
|
| 25 |
json.dump(json_data, f, ensure_ascii=False, indent=2)
|
| 26 |
print(f"JSON file created: {output_path}")
|
| 27 |
return json_data
|
|
@@ -29,16 +30,18 @@ def convert_xml_to_json(xml_path, output_path):
|
|
| 29 |
print("Failed to create JSON data")
|
| 30 |
return None
|
| 31 |
|
|
|
|
| 32 |
def process_in_batches(tx, query, data, batch_size):
|
| 33 |
"""Process data in batches and execute the given query."""
|
| 34 |
for i in range(0, len(data), batch_size):
|
| 35 |
-
batch = data[i:i + batch_size]
|
| 36 |
tx.run(query, {"nodes": batch} if "nodes" in query else {"edges": batch})
|
| 37 |
|
|
|
|
| 38 |
def main():
|
| 39 |
# Paths
|
| 40 |
-
xml_file = os.path.join(WORKING_DIR,
|
| 41 |
-
json_file = os.path.join(WORKING_DIR,
|
| 42 |
|
| 43 |
# Convert XML to JSON
|
| 44 |
json_data = convert_xml_to_json(xml_file, json_file)
|
|
@@ -46,8 +49,8 @@ def main():
|
|
| 46 |
return
|
| 47 |
|
| 48 |
# Load nodes and edges
|
| 49 |
-
nodes = json_data.get(
|
| 50 |
-
edges = json_data.get(
|
| 51 |
|
| 52 |
# Neo4j queries
|
| 53 |
create_nodes_query = """
|
|
@@ -56,8 +59,8 @@ def main():
|
|
| 56 |
SET e.entity_type = node.entity_type,
|
| 57 |
e.description = node.description,
|
| 58 |
e.source_id = node.source_id,
|
| 59 |
-
e.displayName = node.id
|
| 60 |
-
REMOVE e:Entity
|
| 61 |
WITH e, node
|
| 62 |
CALL apoc.create.addLabels(e, [node.entity_type]) YIELD node AS labeledNode
|
| 63 |
RETURN count(*)
|
|
@@ -100,19 +103,24 @@ def main():
|
|
| 100 |
# Execute queries in batches
|
| 101 |
with driver.session() as session:
|
| 102 |
# Insert nodes in batches
|
| 103 |
-
session.execute_write(
|
|
|
|
|
|
|
| 104 |
|
| 105 |
# Insert edges in batches
|
| 106 |
-
session.execute_write(
|
|
|
|
|
|
|
| 107 |
|
| 108 |
# Set displayName and labels
|
| 109 |
session.run(set_displayname_and_labels_query)
|
| 110 |
|
| 111 |
except Exception as e:
|
| 112 |
print(f"Error occurred: {e}")
|
| 113 |
-
|
| 114 |
finally:
|
| 115 |
driver.close()
|
| 116 |
|
|
|
|
| 117 |
if __name__ == "__main__":
|
| 118 |
main()
|
|
|
|
| 13 |
NEO4J_USERNAME = "neo4j"
|
| 14 |
NEO4J_PASSWORD = "your_password"
|
| 15 |
|
| 16 |
+
|
| 17 |
def convert_xml_to_json(xml_path, output_path):
|
| 18 |
"""Converts XML file to JSON and saves the output."""
|
| 19 |
if not os.path.exists(xml_path):
|
|
|
|
| 22 |
|
| 23 |
json_data = xml_to_json(xml_path)
|
| 24 |
if json_data:
|
| 25 |
+
with open(output_path, "w", encoding="utf-8") as f:
|
| 26 |
json.dump(json_data, f, ensure_ascii=False, indent=2)
|
| 27 |
print(f"JSON file created: {output_path}")
|
| 28 |
return json_data
|
|
|
|
| 30 |
print("Failed to create JSON data")
|
| 31 |
return None
|
| 32 |
|
| 33 |
+
|
| 34 |
def process_in_batches(tx, query, data, batch_size):
|
| 35 |
"""Process data in batches and execute the given query."""
|
| 36 |
for i in range(0, len(data), batch_size):
|
| 37 |
+
batch = data[i : i + batch_size]
|
| 38 |
tx.run(query, {"nodes": batch} if "nodes" in query else {"edges": batch})
|
| 39 |
|
| 40 |
+
|
| 41 |
def main():
|
| 42 |
# Paths
|
| 43 |
+
xml_file = os.path.join(WORKING_DIR, "graph_chunk_entity_relation.graphml")
|
| 44 |
+
json_file = os.path.join(WORKING_DIR, "graph_data.json")
|
| 45 |
|
| 46 |
# Convert XML to JSON
|
| 47 |
json_data = convert_xml_to_json(xml_file, json_file)
|
|
|
|
| 49 |
return
|
| 50 |
|
| 51 |
# Load nodes and edges
|
| 52 |
+
nodes = json_data.get("nodes", [])
|
| 53 |
+
edges = json_data.get("edges", [])
|
| 54 |
|
| 55 |
# Neo4j queries
|
| 56 |
create_nodes_query = """
|
|
|
|
| 59 |
SET e.entity_type = node.entity_type,
|
| 60 |
e.description = node.description,
|
| 61 |
e.source_id = node.source_id,
|
| 62 |
+
e.displayName = node.id
|
| 63 |
+
REMOVE e:Entity
|
| 64 |
WITH e, node
|
| 65 |
CALL apoc.create.addLabels(e, [node.entity_type]) YIELD node AS labeledNode
|
| 66 |
RETURN count(*)
|
|
|
|
| 103 |
# Execute queries in batches
|
| 104 |
with driver.session() as session:
|
| 105 |
# Insert nodes in batches
|
| 106 |
+
session.execute_write(
|
| 107 |
+
process_in_batches, create_nodes_query, nodes, BATCH_SIZE_NODES
|
| 108 |
+
)
|
| 109 |
|
| 110 |
# Insert edges in batches
|
| 111 |
+
session.execute_write(
|
| 112 |
+
process_in_batches, create_edges_query, edges, BATCH_SIZE_EDGES
|
| 113 |
+
)
|
| 114 |
|
| 115 |
# Set displayName and labels
|
| 116 |
session.run(set_displayname_and_labels_query)
|
| 117 |
|
| 118 |
except Exception as e:
|
| 119 |
print(f"Error occurred: {e}")
|
| 120 |
+
|
| 121 |
finally:
|
| 122 |
driver.close()
|
| 123 |
|
| 124 |
+
|
| 125 |
if __name__ == "__main__":
|
| 126 |
main()
|
examples/lightrag_openai_compatible_demo.py
CHANGED
|
@@ -52,6 +52,7 @@ async def test_funcs():
|
|
| 52 |
|
| 53 |
# asyncio.run(test_funcs())
|
| 54 |
|
|
|
|
| 55 |
async def main():
|
| 56 |
try:
|
| 57 |
embedding_dimension = await get_embedding_dim()
|
|
@@ -61,35 +62,47 @@ async def main():
|
|
| 61 |
working_dir=WORKING_DIR,
|
| 62 |
llm_model_func=llm_model_func,
|
| 63 |
embedding_func=EmbeddingFunc(
|
| 64 |
-
embedding_dim=embedding_dimension,
|
|
|
|
|
|
|
| 65 |
),
|
| 66 |
)
|
| 67 |
|
| 68 |
-
|
| 69 |
with open("./book.txt", "r", encoding="utf-8") as f:
|
| 70 |
rag.insert(f.read())
|
| 71 |
|
| 72 |
# Perform naive search
|
| 73 |
print(
|
| 74 |
-
rag.query(
|
|
|
|
|
|
|
| 75 |
)
|
| 76 |
|
| 77 |
# Perform local search
|
| 78 |
print(
|
| 79 |
-
rag.query(
|
|
|
|
|
|
|
| 80 |
)
|
| 81 |
|
| 82 |
# Perform global search
|
| 83 |
print(
|
| 84 |
-
rag.query(
|
|
|
|
|
|
|
|
|
|
| 85 |
)
|
| 86 |
|
| 87 |
# Perform hybrid search
|
| 88 |
print(
|
| 89 |
-
rag.query(
|
|
|
|
|
|
|
|
|
|
| 90 |
)
|
| 91 |
except Exception as e:
|
| 92 |
print(f"An error occurred: {e}")
|
| 93 |
|
|
|
|
| 94 |
if __name__ == "__main__":
|
| 95 |
-
asyncio.run(main())
|
|
|
|
| 52 |
|
| 53 |
# asyncio.run(test_funcs())
|
| 54 |
|
| 55 |
+
|
| 56 |
async def main():
|
| 57 |
try:
|
| 58 |
embedding_dimension = await get_embedding_dim()
|
|
|
|
| 62 |
working_dir=WORKING_DIR,
|
| 63 |
llm_model_func=llm_model_func,
|
| 64 |
embedding_func=EmbeddingFunc(
|
| 65 |
+
embedding_dim=embedding_dimension,
|
| 66 |
+
max_token_size=8192,
|
| 67 |
+
func=embedding_func,
|
| 68 |
),
|
| 69 |
)
|
| 70 |
|
|
|
|
| 71 |
with open("./book.txt", "r", encoding="utf-8") as f:
|
| 72 |
rag.insert(f.read())
|
| 73 |
|
| 74 |
# Perform naive search
|
| 75 |
print(
|
| 76 |
+
rag.query(
|
| 77 |
+
"What are the top themes in this story?", param=QueryParam(mode="naive")
|
| 78 |
+
)
|
| 79 |
)
|
| 80 |
|
| 81 |
# Perform local search
|
| 82 |
print(
|
| 83 |
+
rag.query(
|
| 84 |
+
"What are the top themes in this story?", param=QueryParam(mode="local")
|
| 85 |
+
)
|
| 86 |
)
|
| 87 |
|
| 88 |
# Perform global search
|
| 89 |
print(
|
| 90 |
+
rag.query(
|
| 91 |
+
"What are the top themes in this story?",
|
| 92 |
+
param=QueryParam(mode="global"),
|
| 93 |
+
)
|
| 94 |
)
|
| 95 |
|
| 96 |
# Perform hybrid search
|
| 97 |
print(
|
| 98 |
+
rag.query(
|
| 99 |
+
"What are the top themes in this story?",
|
| 100 |
+
param=QueryParam(mode="hybrid"),
|
| 101 |
+
)
|
| 102 |
)
|
| 103 |
except Exception as e:
|
| 104 |
print(f"An error occurred: {e}")
|
| 105 |
|
| 106 |
+
|
| 107 |
if __name__ == "__main__":
|
| 108 |
+
asyncio.run(main())
|
examples/lightrag_siliconcloud_demo.py
CHANGED
|
@@ -30,7 +30,7 @@ async def embedding_func(texts: list[str]) -> np.ndarray:
|
|
| 30 |
texts,
|
| 31 |
model="netease-youdao/bce-embedding-base_v1",
|
| 32 |
api_key=os.getenv("SILICONFLOW_API_KEY"),
|
| 33 |
-
max_token_size=512
|
| 34 |
)
|
| 35 |
|
| 36 |
|
|
|
|
| 30 |
texts,
|
| 31 |
model="netease-youdao/bce-embedding-base_v1",
|
| 32 |
api_key=os.getenv("SILICONFLOW_API_KEY"),
|
| 33 |
+
max_token_size=512,
|
| 34 |
)
|
| 35 |
|
| 36 |
|
examples/vram_management_demo.py
CHANGED
|
@@ -27,11 +27,12 @@ rag = LightRAG(
|
|
| 27 |
# Read all .txt files from the TEXT_FILES_DIR directory
|
| 28 |
texts = []
|
| 29 |
for filename in os.listdir(TEXT_FILES_DIR):
|
| 30 |
-
if filename.endswith(
|
| 31 |
file_path = os.path.join(TEXT_FILES_DIR, filename)
|
| 32 |
-
with open(file_path,
|
| 33 |
texts.append(file.read())
|
| 34 |
|
|
|
|
| 35 |
# Batch insert texts into LightRAG with a retry mechanism
|
| 36 |
def insert_texts_with_retry(rag, texts, retries=3, delay=5):
|
| 37 |
for _ in range(retries):
|
|
@@ -39,37 +40,58 @@ def insert_texts_with_retry(rag, texts, retries=3, delay=5):
|
|
| 39 |
rag.insert(texts)
|
| 40 |
return
|
| 41 |
except Exception as e:
|
| 42 |
-
print(
|
|
|
|
|
|
|
| 43 |
time.sleep(delay)
|
| 44 |
raise RuntimeError("Failed to insert texts after multiple retries.")
|
| 45 |
|
|
|
|
| 46 |
insert_texts_with_retry(rag, texts)
|
| 47 |
|
| 48 |
# Perform different types of queries and handle potential errors
|
| 49 |
try:
|
| 50 |
-
print(
|
|
|
|
|
|
|
|
|
|
|
|
|
| 51 |
except Exception as e:
|
| 52 |
print(f"Error performing naive search: {e}")
|
| 53 |
|
| 54 |
try:
|
| 55 |
-
print(
|
|
|
|
|
|
|
|
|
|
|
|
|
| 56 |
except Exception as e:
|
| 57 |
print(f"Error performing local search: {e}")
|
| 58 |
|
| 59 |
try:
|
| 60 |
-
print(
|
|
|
|
|
|
|
|
|
|
|
|
|
| 61 |
except Exception as e:
|
| 62 |
print(f"Error performing global search: {e}")
|
| 63 |
|
| 64 |
try:
|
| 65 |
-
print(
|
|
|
|
|
|
|
|
|
|
|
|
|
| 66 |
except Exception as e:
|
| 67 |
print(f"Error performing hybrid search: {e}")
|
| 68 |
|
|
|
|
| 69 |
# Function to clear VRAM resources
|
| 70 |
def clear_vram():
|
| 71 |
os.system("sudo nvidia-smi --gpu-reset")
|
| 72 |
|
|
|
|
| 73 |
# Regularly clear VRAM to prevent overflow
|
| 74 |
clear_vram_interval = 3600 # Clear once every hour
|
| 75 |
start_time = time.time()
|
|
|
|
| 27 |
# Read all .txt files from the TEXT_FILES_DIR directory
|
| 28 |
texts = []
|
| 29 |
for filename in os.listdir(TEXT_FILES_DIR):
|
| 30 |
+
if filename.endswith(".txt"):
|
| 31 |
file_path = os.path.join(TEXT_FILES_DIR, filename)
|
| 32 |
+
with open(file_path, "r", encoding="utf-8") as file:
|
| 33 |
texts.append(file.read())
|
| 34 |
|
| 35 |
+
|
| 36 |
# Batch insert texts into LightRAG with a retry mechanism
|
| 37 |
def insert_texts_with_retry(rag, texts, retries=3, delay=5):
|
| 38 |
for _ in range(retries):
|
|
|
|
| 40 |
rag.insert(texts)
|
| 41 |
return
|
| 42 |
except Exception as e:
|
| 43 |
+
print(
|
| 44 |
+
f"Error occurred during insertion: {e}. Retrying in {delay} seconds..."
|
| 45 |
+
)
|
| 46 |
time.sleep(delay)
|
| 47 |
raise RuntimeError("Failed to insert texts after multiple retries.")
|
| 48 |
|
| 49 |
+
|
| 50 |
insert_texts_with_retry(rag, texts)
|
| 51 |
|
| 52 |
# Perform different types of queries and handle potential errors
|
| 53 |
try:
|
| 54 |
+
print(
|
| 55 |
+
rag.query(
|
| 56 |
+
"What are the top themes in this story?", param=QueryParam(mode="naive")
|
| 57 |
+
)
|
| 58 |
+
)
|
| 59 |
except Exception as e:
|
| 60 |
print(f"Error performing naive search: {e}")
|
| 61 |
|
| 62 |
try:
|
| 63 |
+
print(
|
| 64 |
+
rag.query(
|
| 65 |
+
"What are the top themes in this story?", param=QueryParam(mode="local")
|
| 66 |
+
)
|
| 67 |
+
)
|
| 68 |
except Exception as e:
|
| 69 |
print(f"Error performing local search: {e}")
|
| 70 |
|
| 71 |
try:
|
| 72 |
+
print(
|
| 73 |
+
rag.query(
|
| 74 |
+
"What are the top themes in this story?", param=QueryParam(mode="global")
|
| 75 |
+
)
|
| 76 |
+
)
|
| 77 |
except Exception as e:
|
| 78 |
print(f"Error performing global search: {e}")
|
| 79 |
|
| 80 |
try:
|
| 81 |
+
print(
|
| 82 |
+
rag.query(
|
| 83 |
+
"What are the top themes in this story?", param=QueryParam(mode="hybrid")
|
| 84 |
+
)
|
| 85 |
+
)
|
| 86 |
except Exception as e:
|
| 87 |
print(f"Error performing hybrid search: {e}")
|
| 88 |
|
| 89 |
+
|
| 90 |
# Function to clear VRAM resources
|
| 91 |
def clear_vram():
|
| 92 |
os.system("sudo nvidia-smi --gpu-reset")
|
| 93 |
|
| 94 |
+
|
| 95 |
# Regularly clear VRAM to prevent overflow
|
| 96 |
clear_vram_interval = 3600 # Clear once every hour
|
| 97 |
start_time = time.time()
|
lightrag/llm.py
CHANGED
|
@@ -7,7 +7,13 @@ import aiohttp
|
|
| 7 |
import numpy as np
|
| 8 |
import ollama
|
| 9 |
|
| 10 |
-
from openai import
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
|
| 12 |
import base64
|
| 13 |
import struct
|
|
@@ -70,26 +76,31 @@ async def openai_complete_if_cache(
|
|
| 70 |
)
|
| 71 |
return response.choices[0].message.content
|
| 72 |
|
|
|
|
| 73 |
@retry(
|
| 74 |
stop=stop_after_attempt(3),
|
| 75 |
wait=wait_exponential(multiplier=1, min=4, max=10),
|
| 76 |
retry=retry_if_exception_type((RateLimitError, APIConnectionError, Timeout)),
|
| 77 |
)
|
| 78 |
-
async def azure_openai_complete_if_cache(
|
|
|
|
| 79 |
prompt,
|
| 80 |
system_prompt=None,
|
| 81 |
history_messages=[],
|
| 82 |
base_url=None,
|
| 83 |
api_key=None,
|
| 84 |
-
**kwargs
|
|
|
|
| 85 |
if api_key:
|
| 86 |
os.environ["AZURE_OPENAI_API_KEY"] = api_key
|
| 87 |
if base_url:
|
| 88 |
os.environ["AZURE_OPENAI_ENDPOINT"] = base_url
|
| 89 |
|
| 90 |
-
openai_async_client = AsyncAzureOpenAI(
|
| 91 |
-
|
| 92 |
-
|
|
|
|
|
|
|
| 93 |
|
| 94 |
hashing_kv: BaseKVStorage = kwargs.pop("hashing_kv", None)
|
| 95 |
messages = []
|
|
@@ -114,6 +125,7 @@ async def azure_openai_complete_if_cache(model,
|
|
| 114 |
)
|
| 115 |
return response.choices[0].message.content
|
| 116 |
|
|
|
|
| 117 |
class BedrockError(Exception):
|
| 118 |
"""Generic error for issues related to Amazon Bedrock"""
|
| 119 |
|
|
@@ -205,8 +217,12 @@ async def bedrock_complete_if_cache(
|
|
| 205 |
|
| 206 |
@lru_cache(maxsize=1)
|
| 207 |
def initialize_hf_model(model_name):
|
| 208 |
-
hf_tokenizer = AutoTokenizer.from_pretrained(
|
| 209 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 210 |
if hf_tokenizer.pad_token is None:
|
| 211 |
hf_tokenizer.pad_token = hf_tokenizer.eos_token
|
| 212 |
|
|
@@ -328,8 +344,9 @@ async def gpt_4o_mini_complete(
|
|
| 328 |
**kwargs,
|
| 329 |
)
|
| 330 |
|
|
|
|
| 331 |
async def azure_openai_complete(
|
| 332 |
-
|
| 333 |
) -> str:
|
| 334 |
return await azure_openai_complete_if_cache(
|
| 335 |
"conversation-4o-mini",
|
|
@@ -339,6 +356,7 @@ async def azure_openai_complete(
|
|
| 339 |
**kwargs,
|
| 340 |
)
|
| 341 |
|
|
|
|
| 342 |
async def bedrock_complete(
|
| 343 |
prompt, system_prompt=None, history_messages=[], **kwargs
|
| 344 |
) -> str:
|
|
@@ -418,9 +436,11 @@ async def azure_openai_embedding(
|
|
| 418 |
if base_url:
|
| 419 |
os.environ["AZURE_OPENAI_ENDPOINT"] = base_url
|
| 420 |
|
| 421 |
-
openai_async_client = AsyncAzureOpenAI(
|
| 422 |
-
|
| 423 |
-
|
|
|
|
|
|
|
| 424 |
|
| 425 |
response = await openai_async_client.embeddings.create(
|
| 426 |
model=model, input=texts, encoding_format="float"
|
|
@@ -440,35 +460,28 @@ async def siliconcloud_embedding(
|
|
| 440 |
max_token_size: int = 512,
|
| 441 |
api_key: str = None,
|
| 442 |
) -> np.ndarray:
|
| 443 |
-
if api_key and not api_key.startswith(
|
| 444 |
-
api_key =
|
| 445 |
|
| 446 |
-
headers = {
|
| 447 |
-
"Authorization": api_key,
|
| 448 |
-
"Content-Type": "application/json"
|
| 449 |
-
}
|
| 450 |
|
| 451 |
truncate_texts = [text[0:max_token_size] for text in texts]
|
| 452 |
|
| 453 |
-
payload = {
|
| 454 |
-
"model": model,
|
| 455 |
-
"input": truncate_texts,
|
| 456 |
-
"encoding_format": "base64"
|
| 457 |
-
}
|
| 458 |
|
| 459 |
base64_strings = []
|
| 460 |
async with aiohttp.ClientSession() as session:
|
| 461 |
async with session.post(base_url, headers=headers, json=payload) as response:
|
| 462 |
content = await response.json()
|
| 463 |
-
if
|
| 464 |
raise ValueError(content)
|
| 465 |
-
base64_strings = [item[
|
| 466 |
-
|
| 467 |
embeddings = []
|
| 468 |
for string in base64_strings:
|
| 469 |
decode_bytes = base64.b64decode(string)
|
| 470 |
n = len(decode_bytes) // 4
|
| 471 |
-
float_array = struct.unpack(
|
| 472 |
embeddings.append(float_array)
|
| 473 |
return np.array(embeddings)
|
| 474 |
|
|
@@ -563,6 +576,7 @@ async def ollama_embedding(texts: list[str], embed_model) -> np.ndarray:
|
|
| 563 |
|
| 564 |
return embed_text
|
| 565 |
|
|
|
|
| 566 |
class Model(BaseModel):
|
| 567 |
"""
|
| 568 |
This is a Pydantic model class named 'Model' that is used to define a custom language model.
|
|
@@ -580,14 +594,20 @@ class Model(BaseModel):
|
|
| 580 |
The 'kwargs' dictionary contains the model name and API key to be passed to the function.
|
| 581 |
"""
|
| 582 |
|
| 583 |
-
gen_func: Callable[[Any], str] = Field(
|
| 584 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 585 |
|
| 586 |
class Config:
|
| 587 |
arbitrary_types_allowed = True
|
| 588 |
|
| 589 |
|
| 590 |
-
class MultiModel
|
| 591 |
"""
|
| 592 |
Distributes the load across multiple language models. Useful for circumventing low rate limits with certain api providers especially if you are on the free tier.
|
| 593 |
Could also be used for spliting across diffrent models or providers.
|
|
@@ -611,26 +631,31 @@ class MultiModel():
|
|
| 611 |
)
|
| 612 |
```
|
| 613 |
"""
|
|
|
|
| 614 |
def __init__(self, models: List[Model]):
|
| 615 |
self._models = models
|
| 616 |
self._current_model = 0
|
| 617 |
-
|
| 618 |
def _next_model(self):
|
| 619 |
self._current_model = (self._current_model + 1) % len(self._models)
|
| 620 |
return self._models[self._current_model]
|
| 621 |
|
| 622 |
async def llm_model_func(
|
| 623 |
-
self,
|
| 624 |
-
prompt, system_prompt=None, history_messages=[], **kwargs
|
| 625 |
) -> str:
|
| 626 |
-
kwargs.pop("model", None)
|
| 627 |
next_model = self._next_model()
|
| 628 |
-
args = dict(
|
| 629 |
-
|
| 630 |
-
|
| 631 |
-
|
|
|
|
|
|
|
| 632 |
)
|
| 633 |
|
|
|
|
|
|
|
|
|
|
| 634 |
if __name__ == "__main__":
|
| 635 |
import asyncio
|
| 636 |
|
|
|
|
| 7 |
import numpy as np
|
| 8 |
import ollama
|
| 9 |
|
| 10 |
+
from openai import (
|
| 11 |
+
AsyncOpenAI,
|
| 12 |
+
APIConnectionError,
|
| 13 |
+
RateLimitError,
|
| 14 |
+
Timeout,
|
| 15 |
+
AsyncAzureOpenAI,
|
| 16 |
+
)
|
| 17 |
|
| 18 |
import base64
|
| 19 |
import struct
|
|
|
|
| 76 |
)
|
| 77 |
return response.choices[0].message.content
|
| 78 |
|
| 79 |
+
|
| 80 |
@retry(
|
| 81 |
stop=stop_after_attempt(3),
|
| 82 |
wait=wait_exponential(multiplier=1, min=4, max=10),
|
| 83 |
retry=retry_if_exception_type((RateLimitError, APIConnectionError, Timeout)),
|
| 84 |
)
|
| 85 |
+
async def azure_openai_complete_if_cache(
|
| 86 |
+
model,
|
| 87 |
prompt,
|
| 88 |
system_prompt=None,
|
| 89 |
history_messages=[],
|
| 90 |
base_url=None,
|
| 91 |
api_key=None,
|
| 92 |
+
**kwargs,
|
| 93 |
+
):
|
| 94 |
if api_key:
|
| 95 |
os.environ["AZURE_OPENAI_API_KEY"] = api_key
|
| 96 |
if base_url:
|
| 97 |
os.environ["AZURE_OPENAI_ENDPOINT"] = base_url
|
| 98 |
|
| 99 |
+
openai_async_client = AsyncAzureOpenAI(
|
| 100 |
+
azure_endpoint=os.getenv("AZURE_OPENAI_ENDPOINT"),
|
| 101 |
+
api_key=os.getenv("AZURE_OPENAI_API_KEY"),
|
| 102 |
+
api_version=os.getenv("AZURE_OPENAI_API_VERSION"),
|
| 103 |
+
)
|
| 104 |
|
| 105 |
hashing_kv: BaseKVStorage = kwargs.pop("hashing_kv", None)
|
| 106 |
messages = []
|
|
|
|
| 125 |
)
|
| 126 |
return response.choices[0].message.content
|
| 127 |
|
| 128 |
+
|
| 129 |
class BedrockError(Exception):
|
| 130 |
"""Generic error for issues related to Amazon Bedrock"""
|
| 131 |
|
|
|
|
| 217 |
|
| 218 |
@lru_cache(maxsize=1)
|
| 219 |
def initialize_hf_model(model_name):
|
| 220 |
+
hf_tokenizer = AutoTokenizer.from_pretrained(
|
| 221 |
+
model_name, device_map="auto", trust_remote_code=True
|
| 222 |
+
)
|
| 223 |
+
hf_model = AutoModelForCausalLM.from_pretrained(
|
| 224 |
+
model_name, device_map="auto", trust_remote_code=True
|
| 225 |
+
)
|
| 226 |
if hf_tokenizer.pad_token is None:
|
| 227 |
hf_tokenizer.pad_token = hf_tokenizer.eos_token
|
| 228 |
|
|
|
|
| 344 |
**kwargs,
|
| 345 |
)
|
| 346 |
|
| 347 |
+
|
| 348 |
async def azure_openai_complete(
|
| 349 |
+
prompt, system_prompt=None, history_messages=[], **kwargs
|
| 350 |
) -> str:
|
| 351 |
return await azure_openai_complete_if_cache(
|
| 352 |
"conversation-4o-mini",
|
|
|
|
| 356 |
**kwargs,
|
| 357 |
)
|
| 358 |
|
| 359 |
+
|
| 360 |
async def bedrock_complete(
|
| 361 |
prompt, system_prompt=None, history_messages=[], **kwargs
|
| 362 |
) -> str:
|
|
|
|
| 436 |
if base_url:
|
| 437 |
os.environ["AZURE_OPENAI_ENDPOINT"] = base_url
|
| 438 |
|
| 439 |
+
openai_async_client = AsyncAzureOpenAI(
|
| 440 |
+
azure_endpoint=os.getenv("AZURE_OPENAI_ENDPOINT"),
|
| 441 |
+
api_key=os.getenv("AZURE_OPENAI_API_KEY"),
|
| 442 |
+
api_version=os.getenv("AZURE_OPENAI_API_VERSION"),
|
| 443 |
+
)
|
| 444 |
|
| 445 |
response = await openai_async_client.embeddings.create(
|
| 446 |
model=model, input=texts, encoding_format="float"
|
|
|
|
| 460 |
max_token_size: int = 512,
|
| 461 |
api_key: str = None,
|
| 462 |
) -> np.ndarray:
|
| 463 |
+
if api_key and not api_key.startswith("Bearer "):
|
| 464 |
+
api_key = "Bearer " + api_key
|
| 465 |
|
| 466 |
+
headers = {"Authorization": api_key, "Content-Type": "application/json"}
|
|
|
|
|
|
|
|
|
|
| 467 |
|
| 468 |
truncate_texts = [text[0:max_token_size] for text in texts]
|
| 469 |
|
| 470 |
+
payload = {"model": model, "input": truncate_texts, "encoding_format": "base64"}
|
|
|
|
|
|
|
|
|
|
|
|
|
| 471 |
|
| 472 |
base64_strings = []
|
| 473 |
async with aiohttp.ClientSession() as session:
|
| 474 |
async with session.post(base_url, headers=headers, json=payload) as response:
|
| 475 |
content = await response.json()
|
| 476 |
+
if "code" in content:
|
| 477 |
raise ValueError(content)
|
| 478 |
+
base64_strings = [item["embedding"] for item in content["data"]]
|
| 479 |
+
|
| 480 |
embeddings = []
|
| 481 |
for string in base64_strings:
|
| 482 |
decode_bytes = base64.b64decode(string)
|
| 483 |
n = len(decode_bytes) // 4
|
| 484 |
+
float_array = struct.unpack("<" + "f" * n, decode_bytes)
|
| 485 |
embeddings.append(float_array)
|
| 486 |
return np.array(embeddings)
|
| 487 |
|
|
|
|
| 576 |
|
| 577 |
return embed_text
|
| 578 |
|
| 579 |
+
|
| 580 |
class Model(BaseModel):
|
| 581 |
"""
|
| 582 |
This is a Pydantic model class named 'Model' that is used to define a custom language model.
|
|
|
|
| 594 |
The 'kwargs' dictionary contains the model name and API key to be passed to the function.
|
| 595 |
"""
|
| 596 |
|
| 597 |
+
gen_func: Callable[[Any], str] = Field(
|
| 598 |
+
...,
|
| 599 |
+
description="A function that generates the response from the llm. The response must be a string",
|
| 600 |
+
)
|
| 601 |
+
kwargs: Dict[str, Any] = Field(
|
| 602 |
+
...,
|
| 603 |
+
description="The arguments to pass to the callable function. Eg. the api key, model name, etc",
|
| 604 |
+
)
|
| 605 |
|
| 606 |
class Config:
|
| 607 |
arbitrary_types_allowed = True
|
| 608 |
|
| 609 |
|
| 610 |
+
class MultiModel:
|
| 611 |
"""
|
| 612 |
Distributes the load across multiple language models. Useful for circumventing low rate limits with certain api providers especially if you are on the free tier.
|
| 613 |
Could also be used for spliting across diffrent models or providers.
|
|
|
|
| 631 |
)
|
| 632 |
```
|
| 633 |
"""
|
| 634 |
+
|
| 635 |
def __init__(self, models: List[Model]):
|
| 636 |
self._models = models
|
| 637 |
self._current_model = 0
|
| 638 |
+
|
| 639 |
def _next_model(self):
|
| 640 |
self._current_model = (self._current_model + 1) % len(self._models)
|
| 641 |
return self._models[self._current_model]
|
| 642 |
|
| 643 |
async def llm_model_func(
|
| 644 |
+
self, prompt, system_prompt=None, history_messages=[], **kwargs
|
|
|
|
| 645 |
) -> str:
|
| 646 |
+
kwargs.pop("model", None) # stop from overwriting the custom model name
|
| 647 |
next_model = self._next_model()
|
| 648 |
+
args = dict(
|
| 649 |
+
prompt=prompt,
|
| 650 |
+
system_prompt=system_prompt,
|
| 651 |
+
history_messages=history_messages,
|
| 652 |
+
**kwargs,
|
| 653 |
+
**next_model.kwargs,
|
| 654 |
)
|
| 655 |
|
| 656 |
+
return await next_model.gen_func(**args)
|
| 657 |
+
|
| 658 |
+
|
| 659 |
if __name__ == "__main__":
|
| 660 |
import asyncio
|
| 661 |
|
lightrag/utils.py
CHANGED
|
@@ -185,6 +185,7 @@ def save_data_to_file(data, file_name):
|
|
| 185 |
with open(file_name, "w", encoding="utf-8") as f:
|
| 186 |
json.dump(data, f, ensure_ascii=False, indent=4)
|
| 187 |
|
|
|
|
| 188 |
def xml_to_json(xml_file):
|
| 189 |
try:
|
| 190 |
tree = ET.parse(xml_file)
|
|
@@ -194,31 +195,42 @@ def xml_to_json(xml_file):
|
|
| 194 |
print(f"Root element: {root.tag}")
|
| 195 |
print(f"Root attributes: {root.attrib}")
|
| 196 |
|
| 197 |
-
data = {
|
| 198 |
-
"nodes": [],
|
| 199 |
-
"edges": []
|
| 200 |
-
}
|
| 201 |
|
| 202 |
# Use namespace
|
| 203 |
-
namespace = {
|
| 204 |
|
| 205 |
-
for node in root.findall(
|
| 206 |
node_data = {
|
| 207 |
-
"id": node.get(
|
| 208 |
-
"entity_type": node.find("./data[@key='d0']", namespace).text.strip('"')
|
| 209 |
-
|
| 210 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 211 |
}
|
| 212 |
data["nodes"].append(node_data)
|
| 213 |
|
| 214 |
-
for edge in root.findall(
|
| 215 |
edge_data = {
|
| 216 |
-
"source": edge.get(
|
| 217 |
-
"target": edge.get(
|
| 218 |
-
"weight": float(edge.find("./data[@key='d3']", namespace).text)
|
| 219 |
-
|
| 220 |
-
|
| 221 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 222 |
}
|
| 223 |
data["edges"].append(edge_data)
|
| 224 |
|
|
|
|
| 185 |
with open(file_name, "w", encoding="utf-8") as f:
|
| 186 |
json.dump(data, f, ensure_ascii=False, indent=4)
|
| 187 |
|
| 188 |
+
|
| 189 |
def xml_to_json(xml_file):
|
| 190 |
try:
|
| 191 |
tree = ET.parse(xml_file)
|
|
|
|
| 195 |
print(f"Root element: {root.tag}")
|
| 196 |
print(f"Root attributes: {root.attrib}")
|
| 197 |
|
| 198 |
+
data = {"nodes": [], "edges": []}
|
|
|
|
|
|
|
|
|
|
| 199 |
|
| 200 |
# Use namespace
|
| 201 |
+
namespace = {"": "http://graphml.graphdrawing.org/xmlns"}
|
| 202 |
|
| 203 |
+
for node in root.findall(".//node", namespace):
|
| 204 |
node_data = {
|
| 205 |
+
"id": node.get("id").strip('"'),
|
| 206 |
+
"entity_type": node.find("./data[@key='d0']", namespace).text.strip('"')
|
| 207 |
+
if node.find("./data[@key='d0']", namespace) is not None
|
| 208 |
+
else "",
|
| 209 |
+
"description": node.find("./data[@key='d1']", namespace).text
|
| 210 |
+
if node.find("./data[@key='d1']", namespace) is not None
|
| 211 |
+
else "",
|
| 212 |
+
"source_id": node.find("./data[@key='d2']", namespace).text
|
| 213 |
+
if node.find("./data[@key='d2']", namespace) is not None
|
| 214 |
+
else "",
|
| 215 |
}
|
| 216 |
data["nodes"].append(node_data)
|
| 217 |
|
| 218 |
+
for edge in root.findall(".//edge", namespace):
|
| 219 |
edge_data = {
|
| 220 |
+
"source": edge.get("source").strip('"'),
|
| 221 |
+
"target": edge.get("target").strip('"'),
|
| 222 |
+
"weight": float(edge.find("./data[@key='d3']", namespace).text)
|
| 223 |
+
if edge.find("./data[@key='d3']", namespace) is not None
|
| 224 |
+
else 0.0,
|
| 225 |
+
"description": edge.find("./data[@key='d4']", namespace).text
|
| 226 |
+
if edge.find("./data[@key='d4']", namespace) is not None
|
| 227 |
+
else "",
|
| 228 |
+
"keywords": edge.find("./data[@key='d5']", namespace).text
|
| 229 |
+
if edge.find("./data[@key='d5']", namespace) is not None
|
| 230 |
+
else "",
|
| 231 |
+
"source_id": edge.find("./data[@key='d6']", namespace).text
|
| 232 |
+
if edge.find("./data[@key='d6']", namespace) is not None
|
| 233 |
+
else "",
|
| 234 |
}
|
| 235 |
data["edges"].append(edge_data)
|
| 236 |
|
requirements.txt
CHANGED
|
@@ -1,15 +1,15 @@
|
|
| 1 |
accelerate
|
| 2 |
aioboto3
|
|
|
|
| 3 |
graspologic
|
| 4 |
hnswlib
|
| 5 |
nano-vectordb
|
| 6 |
networkx
|
| 7 |
ollama
|
| 8 |
openai
|
|
|
|
| 9 |
tenacity
|
| 10 |
tiktoken
|
| 11 |
torch
|
| 12 |
transformers
|
| 13 |
xxhash
|
| 14 |
-
pyvis
|
| 15 |
-
aiohttp
|
|
|
|
| 1 |
accelerate
|
| 2 |
aioboto3
|
| 3 |
+
aiohttp
|
| 4 |
graspologic
|
| 5 |
hnswlib
|
| 6 |
nano-vectordb
|
| 7 |
networkx
|
| 8 |
ollama
|
| 9 |
openai
|
| 10 |
+
pyvis
|
| 11 |
tenacity
|
| 12 |
tiktoken
|
| 13 |
torch
|
| 14 |
transformers
|
| 15 |
xxhash
|
|
|
|
|
|