ArnoChen
add graph depth and layout iteration settings
07eaad0
raw
history blame
9.37 kB
import axios, { AxiosError } from 'axios'
import { backendBaseUrl } from '@/lib/constants'
import { errorMessage } from '@/lib/utils'
import { useSettingsStore } from '@/stores/settings'
// Types
export type LightragNodeType = {
id: string
labels: string[]
properties: Record<string, any>
}
export type LightragEdgeType = {
id: string
source: string
target: string
type: string
properties: Record<string, any>
}
export type LightragGraphType = {
nodes: LightragNodeType[]
edges: LightragEdgeType[]
}
export type LightragStatus = {
status: 'healthy'
working_directory: string
input_directory: string
configuration: {
llm_binding: string
llm_binding_host: string
llm_model: string
embedding_binding: string
embedding_binding_host: string
embedding_model: string
max_tokens: number
kv_storage: string
doc_status_storage: string
graph_storage: string
vector_storage: string
}
}
export type LightragDocumentsScanProgress = {
is_scanning: boolean
current_file: string
indexed_count: number
total_files: number
progress: number
}
/**
* Specifies the retrieval mode:
* - "naive": Performs a basic search without advanced techniques.
* - "local": Focuses on context-dependent information.
* - "global": Utilizes global knowledge.
* - "hybrid": Combines local and global retrieval methods.
* - "mix": Integrates knowledge graph and vector retrieval.
*/
export type QueryMode = 'naive' | 'local' | 'global' | 'hybrid' | 'mix'
export type Message = {
role: 'user' | 'assistant' | 'system'
content: string
}
export type QueryRequest = {
query: string
/** Specifies the retrieval mode. */
mode: QueryMode
/** If True, only returns the retrieved context without generating a response. */
only_need_context?: boolean
/** If True, only returns the generated prompt without producing a response. */
only_need_prompt?: boolean
/** Defines the response format. Examples: 'Multiple Paragraphs', 'Single Paragraph', 'Bullet Points'. */
response_type?: string
/** If True, enables streaming output for real-time responses. */
stream?: boolean
/** Number of top items to retrieve. Represents entities in 'local' mode and relationships in 'global' mode. */
top_k?: number
/** Maximum number of tokens allowed for each retrieved text chunk. */
max_token_for_text_unit?: number
/** Maximum number of tokens allocated for relationship descriptions in global retrieval. */
max_token_for_global_context?: number
/** Maximum number of tokens allocated for entity descriptions in local retrieval. */
max_token_for_local_context?: number
/** List of high-level keywords to prioritize in retrieval. */
hl_keywords?: string[]
/** List of low-level keywords to refine retrieval focus. */
ll_keywords?: string[]
/**
* Stores past conversation history to maintain context.
* Format: [{"role": "user/assistant", "content": "message"}].
*/
conversation_history?: Message[]
/** Number of complete conversation turns (user-assistant pairs) to consider in the response context. */
history_turns?: number
}
export type QueryResponse = {
response: string
}
export type DocActionResponse = {
status: 'success' | 'partial_success' | 'failure'
message: string
}
export type DocStatus = 'pending' | 'processing' | 'processed' | 'failed'
export type DocStatusResponse = {
id: string
content_summary: string
content_length: number
status: DocStatus
created_at: string
updated_at: string
chunks_count?: number
error?: string
metadata?: Record<string, any>
}
export type DocsStatusesResponse = {
statuses: Record<DocStatus, DocStatusResponse[]>
}
export const InvalidApiKeyError = 'Invalid API Key'
export const RequireApiKeError = 'API Key required'
// Axios instance
const axiosInstance = axios.create({
baseURL: backendBaseUrl,
headers: {
'Content-Type': 'application/json'
}
})
// Interceptor:add api key
axiosInstance.interceptors.request.use((config) => {
const apiKey = useSettingsStore.getState().apiKey
if (apiKey) {
config.headers['X-API-Key'] = apiKey
}
return config
})
// Interceptor:hanle error
axiosInstance.interceptors.response.use(
(response) => response,
(error: AxiosError) => {
if (error.response) {
throw new Error(
`${error.response.status} ${error.response.statusText}\n${JSON.stringify(
error.response.data
)}\n${error.config?.url}`
)
}
throw error
}
)
// API methods
export const queryGraphs = async (label: string, maxDepth: number): Promise<LightragGraphType> => {
const response = await axiosInstance.get(`/graphs?label=${label}&max_depth=${maxDepth}`)
return response.data
}
export const getGraphLabels = async (): Promise<string[]> => {
const response = await axiosInstance.get('/graph/label/list')
return response.data
}
export const checkHealth = async (): Promise<
LightragStatus | { status: 'error'; message: string }
> => {
try {
const response = await axiosInstance.get('/health')
return response.data
} catch (e) {
return {
status: 'error',
message: errorMessage(e)
}
}
}
export const getDocuments = async (): Promise<DocsStatusesResponse> => {
const response = await axiosInstance.get('/documents')
return response.data
}
export const scanNewDocuments = async (): Promise<{ status: string }> => {
const response = await axiosInstance.post('/documents/scan')
return response.data
}
export const getDocumentsScanProgress = async (): Promise<LightragDocumentsScanProgress> => {
const response = await axiosInstance.get('/documents/scan-progress')
return response.data
}
export const queryText = async (request: QueryRequest): Promise<QueryResponse> => {
const response = await axiosInstance.post('/query', request)
return response.data
}
export const queryTextStream = async (
request: QueryRequest,
onChunk: (chunk: string) => void,
onError?: (error: string) => void
) => {
try {
let buffer = ''
await axiosInstance
.post('/query/stream', request, {
responseType: 'text',
headers: {
Accept: 'application/x-ndjson'
},
transformResponse: [
(data: string) => {
// Accumulate the data and process complete lines
buffer += data
const lines = buffer.split('\n')
// Keep the last potentially incomplete line in the buffer
buffer = lines.pop() || ''
for (const line of lines) {
if (line.trim()) {
try {
const parsed = JSON.parse(line)
if (parsed.response) {
onChunk(parsed.response)
} else if (parsed.error && onError) {
onError(parsed.error)
}
} catch (e) {
console.error('Error parsing stream chunk:', e)
if (onError) onError('Error parsing server response')
}
}
}
return data
}
]
})
.catch((error) => {
if (onError) onError(errorMessage(error))
})
// Process any remaining data in the buffer
if (buffer.trim()) {
try {
const parsed = JSON.parse(buffer)
if (parsed.response) {
onChunk(parsed.response)
} else if (parsed.error && onError) {
onError(parsed.error)
}
} catch (e) {
console.error('Error parsing final chunk:', e)
if (onError) onError('Error parsing server response')
}
}
} catch (error) {
const message = errorMessage(error)
console.error('Stream request failed:', message)
if (onError) onError(message)
}
}
export const insertText = async (text: string): Promise<DocActionResponse> => {
const response = await axiosInstance.post('/documents/text', { text })
return response.data
}
export const insertTexts = async (texts: string[]): Promise<DocActionResponse> => {
const response = await axiosInstance.post('/documents/texts', { texts })
return response.data
}
export const uploadDocument = async (
file: File,
onUploadProgress?: (percentCompleted: number) => void
): Promise<DocActionResponse> => {
const formData = new FormData()
formData.append('file', file)
const response = await axiosInstance.post('/documents/upload', formData, {
headers: {
'Content-Type': 'multipart/form-data'
},
// prettier-ignore
onUploadProgress:
onUploadProgress !== undefined
? (progressEvent) => {
const percentCompleted = Math.round((progressEvent.loaded * 100) / progressEvent.total!)
onUploadProgress(percentCompleted)
}
: undefined
})
return response.data
}
export const batchUploadDocuments = async (
files: File[],
onUploadProgress?: (fileName: string, percentCompleted: number) => void
): Promise<DocActionResponse[]> => {
return await Promise.all(
files.map(async (file) => {
return await uploadDocument(file, (percentCompleted) => {
onUploadProgress?.(file.name, percentCompleted)
})
})
)
}
export const clearDocuments = async (): Promise<DocActionResponse> => {
const response = await axiosInstance.delete('/documents')
return response.data
}