!pip install -q -U numpy matplotlib plotly pandas scipy scikit-learn openai python-dotenv from aimakerspace.text_utils import TextFileLoader, CharacterTextSplitter from aimakerspace.vectordatabase import VectorDatabase import asyncio text_loader = TextFileLoader("data/KingLear.txt") documents = text_loader.load_documents() len(documents) text_splitter = CharacterTextSplitter() split_documents = text_splitter.split_texts(documents) import os import openai from getpass import getpass openai.api_key = getpass("OpenAI API Key: ") os.environ["OPENAI_API_KEY"] = openai.api_key vector_db = VectorDatabase() vector_db = asyncio.run(vector_db.abuild_from_list(split_documents)) import sys sys.path.append('/home/rlpeter70/LLMO-Cohort-3/Week 1/Thursday - Retrieval Augmented Generation QA Application /aimakerspace/openai_utils') from aimakerspace.openai_utils.prompts import ( UserRolePrompt, SystemRolePrompt, AssistantRolePrompt, ) from aimakerspace.openai_utils.chatmodel import ChatOpenAI chat_openai = ChatOpenAI() user_prompt_template = "{content}" user_role_prompt = UserRolePrompt(user_prompt_template) system_prompt_template = ( "You are an expert in {expertise}, you always answer in a kind way." ) system_role_prompt = SystemRolePrompt(system_prompt_template) messages = [ user_role_prompt.create_message( content="What is the best way to write a loop?" ), system_role_prompt.create_message(expertise="Python"), ] response = chat_openai.run(messages) RAQA_PROMPT_TEMPLATE = """ Use the provided context to answer the user's query. You may not answer the user's query unless there is specific context in the following text. If you do not know the answer, or cannot answer, please respond with "I don't know". Context: {context} """ raqa_prompt = SystemRolePrompt(RAQA_PROMPT_TEMPLATE) USER_PROMPT_TEMPLATE = """ User Query: {user_query} """ user_prompt = UserRolePrompt(USER_PROMPT_TEMPLATE) class RetrievalAugmentedQAPipeline: def __init__(self, llm: ChatOpenAI(), vector_db_retriever: VectorDatabase) -> None: self.llm = llm self.vector_db_retriever = vector_db_retriever def run_pipeline(self, user_query: str) -> str: context_list = self.vector_db_retriever.search_by_text(user_query, k=4) context_prompt = "" for context in context_list: context_prompt += context[0] + "\n" formatted_system_prompt = raqa_prompt.create_message(context=context_prompt) formatted_user_prompt = user_prompt.create_message(user_query=user_query) return self.llm.run([formatted_system_prompt, formatted_user_prompt]) retrieval_augmented_qa_pipeline = RetrievalAugmentedQAPipeline( vector_db_retriever=vector_db, llm=chat_openai )