# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved # pyre-unsafe import pickle from functools import lru_cache from typing import Dict, Optional, Tuple import torch from detectron2.utils.file_io import PathManager from densepose.data.meshes.catalog import MeshCatalog, MeshInfo def _maybe_copy_to_device( attribute: Optional[torch.Tensor], device: torch.device ) -> Optional[torch.Tensor]: if attribute is None: return None return attribute.to(device) class Mesh: def __init__( self, vertices: Optional[torch.Tensor] = None, faces: Optional[torch.Tensor] = None, geodists: Optional[torch.Tensor] = None, symmetry: Optional[Dict[str, torch.Tensor]] = None, texcoords: Optional[torch.Tensor] = None, mesh_info: Optional[MeshInfo] = None, device: Optional[torch.device] = None, ): """ Args: vertices (tensor [N, 3] of float32): vertex coordinates in 3D faces (tensor [M, 3] of long): triangular face represented as 3 vertex indices geodists (tensor [N, N] of float32): geodesic distances from vertex `i` to vertex `j` (optional, default: None) symmetry (dict: str -> tensor): various mesh symmetry data: - "vertex_transforms": vertex mapping under horizontal flip, tensor of size [N] of type long; vertex `i` is mapped to vertex `tensor[i]` (optional, default: None) texcoords (tensor [N, 2] of float32): texture coordinates, i.e. global and normalized mesh UVs (optional, default: None) mesh_info (MeshInfo type): necessary to load the attributes on-the-go, can be used instead of passing all the variables one by one device (torch.device): device of the Mesh. If not provided, will use the device of the vertices """ self._vertices = vertices self._faces = faces self._geodists = geodists self._symmetry = symmetry self._texcoords = texcoords self.mesh_info = mesh_info self.device = device assert self._vertices is not None or self.mesh_info is not None all_fields = [self._vertices, self._faces, self._geodists, self._texcoords] if self.device is None: for field in all_fields: if field is not None: self.device = field.device break if self.device is None and symmetry is not None: for key in symmetry: self.device = symmetry[key].device break self.device = torch.device("cpu") if self.device is None else self.device assert all([var.device == self.device for var in all_fields if var is not None]) if symmetry: assert all(symmetry[key].device == self.device for key in symmetry) if texcoords and vertices: assert len(vertices) == len(texcoords) def to(self, device: torch.device): device_symmetry = self._symmetry if device_symmetry: device_symmetry = {key: value.to(device) for key, value in device_symmetry.items()} return Mesh( _maybe_copy_to_device(self._vertices, device), _maybe_copy_to_device(self._faces, device), _maybe_copy_to_device(self._geodists, device), device_symmetry, _maybe_copy_to_device(self._texcoords, device), self.mesh_info, device, ) @property def vertices(self): if self._vertices is None and self.mesh_info is not None: self._vertices = load_mesh_data(self.mesh_info.data, "vertices", self.device) return self._vertices @property def faces(self): if self._faces is None and self.mesh_info is not None: self._faces = load_mesh_data(self.mesh_info.data, "faces", self.device) return self._faces @property def geodists(self): if self._geodists is None and self.mesh_info is not None: self._geodists = load_mesh_auxiliary_data(self.mesh_info.geodists, self.device) return self._geodists @property def symmetry(self): if self._symmetry is None and self.mesh_info is not None: self._symmetry = load_mesh_symmetry(self.mesh_info.symmetry, self.device) return self._symmetry @property def texcoords(self): if self._texcoords is None and self.mesh_info is not None: self._texcoords = load_mesh_auxiliary_data(self.mesh_info.texcoords, self.device) return self._texcoords def get_geodists(self): if self.geodists is None: self.geodists = self._compute_geodists() return self.geodists def _compute_geodists(self): # TODO: compute using Laplace-Beltrami geodists = None return geodists def load_mesh_data( mesh_fpath: str, field: str, device: Optional[torch.device] = None ) -> Tuple[Optional[torch.Tensor], Optional[torch.Tensor]]: with PathManager.open(mesh_fpath, "rb") as hFile: # pyre-fixme[7]: Expected `Tuple[Optional[Tensor], Optional[Tensor]]` but # got `Tensor`. return torch.as_tensor(pickle.load(hFile)[field], dtype=torch.float).to(device) return None def load_mesh_auxiliary_data( fpath: str, device: Optional[torch.device] = None ) -> Optional[torch.Tensor]: fpath_local = PathManager.get_local_path(fpath) with PathManager.open(fpath_local, "rb") as hFile: return torch.as_tensor(pickle.load(hFile), dtype=torch.float).to(device) return None @lru_cache() def load_mesh_symmetry( symmetry_fpath: str, device: Optional[torch.device] = None ) -> Optional[Dict[str, torch.Tensor]]: with PathManager.open(symmetry_fpath, "rb") as hFile: symmetry_loaded = pickle.load(hFile) symmetry = { "vertex_transforms": torch.as_tensor( symmetry_loaded["vertex_transforms"], dtype=torch.long ).to(device), } return symmetry return None @lru_cache() def create_mesh(mesh_name: str, device: Optional[torch.device] = None) -> Mesh: return Mesh(mesh_info=MeshCatalog[mesh_name], device=device)