from detectron2.config import LazyCall as L from detectron2.layers import ShapeSpec from detectron2.modeling.meta_arch import GeneralizedRCNN from detectron2.modeling.anchor_generator import DefaultAnchorGenerator from detectron2.modeling.backbone import BasicStem, BottleneckBlock, ResNet from detectron2.modeling.box_regression import Box2BoxTransform from detectron2.modeling.matcher import Matcher from detectron2.modeling.poolers import ROIPooler from detectron2.modeling.proposal_generator import RPN, StandardRPNHead from detectron2.modeling.roi_heads import ( FastRCNNOutputLayers, MaskRCNNConvUpsampleHead, Res5ROIHeads, ) from ..data.constants import constants model = L(GeneralizedRCNN)( backbone=L(ResNet)( stem=L(BasicStem)(in_channels=3, out_channels=64, norm="FrozenBN"), stages=L(ResNet.make_default_stages)( depth=50, stride_in_1x1=True, norm="FrozenBN", ), out_features=["res4"], ), proposal_generator=L(RPN)( in_features=["res4"], head=L(StandardRPNHead)(in_channels=1024, num_anchors=15), anchor_generator=L(DefaultAnchorGenerator)( sizes=[[32, 64, 128, 256, 512]], aspect_ratios=[0.5, 1.0, 2.0], strides=[16], offset=0.0, ), anchor_matcher=L(Matcher)( thresholds=[0.3, 0.7], labels=[0, -1, 1], allow_low_quality_matches=True ), box2box_transform=L(Box2BoxTransform)(weights=[1.0, 1.0, 1.0, 1.0]), batch_size_per_image=256, positive_fraction=0.5, pre_nms_topk=(12000, 6000), post_nms_topk=(2000, 1000), nms_thresh=0.7, ), roi_heads=L(Res5ROIHeads)( num_classes=80, batch_size_per_image=512, positive_fraction=0.25, proposal_matcher=L(Matcher)( thresholds=[0.5], labels=[0, 1], allow_low_quality_matches=False ), in_features=["res4"], pooler=L(ROIPooler)( output_size=14, scales=(1.0 / 16,), sampling_ratio=0, pooler_type="ROIAlignV2", ), res5=L(ResNet.make_stage)( block_class=BottleneckBlock, num_blocks=3, stride_per_block=[2, 1, 1], in_channels=1024, bottleneck_channels=512, out_channels=2048, norm="FrozenBN", stride_in_1x1=True, ), box_predictor=L(FastRCNNOutputLayers)( input_shape=L(ShapeSpec)(channels="${...res5.out_channels}", height=1, width=1), test_score_thresh=0.05, box2box_transform=L(Box2BoxTransform)(weights=(10, 10, 5, 5)), num_classes="${..num_classes}", ), mask_head=L(MaskRCNNConvUpsampleHead)( input_shape=L(ShapeSpec)( channels="${...res5.out_channels}", width="${...pooler.output_size}", height="${...pooler.output_size}", ), num_classes="${..num_classes}", conv_dims=[256], ), ), pixel_mean=constants.imagenet_bgr256_mean, pixel_std=constants.imagenet_bgr256_std, input_format="BGR", )