# DeepLab in Detectron2 In this repository, we implement DeepLabV3 and DeepLabV3+ in Detectron2. ## Installation Install Detectron2 following [the instructions](https://detectron2.readthedocs.io/tutorials/install.html). ## Training To train a model with 8 GPUs run: ```bash cd /path/to/detectron2/projects/DeepLab python train_net.py --config-file configs/Cityscapes-SemanticSegmentation/deeplab_v3_plus_R_103_os16_mg124_poly_90k_bs16.yaml --num-gpus 8 ``` ## Evaluation Model evaluation can be done similarly: ```bash cd /path/to/detectron2/projects/DeepLab python train_net.py --config-file configs/Cityscapes-SemanticSegmentation/deeplab_v3_plus_R_103_os16_mg124_poly_90k_bs16.yaml --eval-only MODEL.WEIGHTS /path/to/model_checkpoint ``` ## Cityscapes Semantic Segmentation Cityscapes models are trained with ImageNet pretraining.
Method Backbone Output
resolution
mIoU model id download
DeepLabV3 R101-DC5 1024×2048 76.7 - -  |  -
DeepLabV3 R103-DC5 1024×2048 78.5 28041665 model | metrics
DeepLabV3+ R101-DC5 1024×2048 78.1 - -  |  -
DeepLabV3+ R103-DC5 1024×2048 80.0 28054032 model | metrics
Note: - [R103](https://dl.fbaipublicfiles.com/detectron2/DeepLab/R-103.pkl): a ResNet-101 with its first 7x7 convolution replaced by 3 3x3 convolutions. This modification has been used in most semantic segmentation papers. We pre-train this backbone on ImageNet using the default recipe of [pytorch examples](https://github.com/pytorch/examples/tree/master/imagenet). - DC5 means using dilated convolution in `res5`. ## Citing DeepLab If you use DeepLab, please use the following BibTeX entry. * DeepLabv3+: ``` @inproceedings{deeplabv3plus2018, title={Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation}, author={Liang-Chieh Chen and Yukun Zhu and George Papandreou and Florian Schroff and Hartwig Adam}, booktitle={ECCV}, year={2018} } ``` * DeepLabv3: ``` @article{deeplabv32018, title={Rethinking atrous convolution for semantic image segmentation}, author={Chen, Liang-Chieh and Papandreou, George and Schroff, Florian and Adam, Hartwig}, journal={arXiv:1706.05587}, year={2017} } ```