# DeepLab in Detectron2 In this repository, we implement DeepLabV3 and DeepLabV3+ in Detectron2. ## Installation Install Detectron2 following [the instructions](https://detectron2.readthedocs.io/tutorials/install.html). ## Training To train a model with 8 GPUs run: ```bash cd /path/to/detectron2/projects/DeepLab python train_net.py --config-file configs/Cityscapes-SemanticSegmentation/deeplab_v3_plus_R_103_os16_mg124_poly_90k_bs16.yaml --num-gpus 8 ``` ## Evaluation Model evaluation can be done similarly: ```bash cd /path/to/detectron2/projects/DeepLab python train_net.py --config-file configs/Cityscapes-SemanticSegmentation/deeplab_v3_plus_R_103_os16_mg124_poly_90k_bs16.yaml --eval-only MODEL.WEIGHTS /path/to/model_checkpoint ``` ## Cityscapes Semantic Segmentation Cityscapes models are trained with ImageNet pretraining.
Method | Backbone | Output resolution |
mIoU | model id | download |
---|---|---|---|---|---|
DeepLabV3 | R101-DC5 | 1024×2048 | 76.7 | - | - | - |
DeepLabV3 | R103-DC5 | 1024×2048 | 78.5 | 28041665 | model | metrics |
DeepLabV3+ | R101-DC5 | 1024×2048 | 78.1 | - | - | - |
DeepLabV3+ | R103-DC5 | 1024×2048 | 80.0 | 28054032 | model | metrics |