Update main.py
Browse files
main.py
CHANGED
|
@@ -17,7 +17,7 @@ if not REPLICATE_API_TOKEN:
|
|
| 17 |
raise ValueError("REPLICATE_API_TOKEN environment variable not set.")
|
| 18 |
|
| 19 |
# FastAPI Init
|
| 20 |
-
app = FastAPI(title="Replicate to OpenAI Compatibility Layer", version="9.
|
| 21 |
|
| 22 |
# --- Pydantic Models ---
|
| 23 |
class ModelCard(BaseModel):
|
|
@@ -81,10 +81,14 @@ def prepare_replicate_input(request: OpenAIChatCompletionRequest) -> Dict[str, A
|
|
| 81 |
return payload
|
| 82 |
|
| 83 |
async def stream_replicate_sse(replicate_model_id: str, input_payload: dict):
|
| 84 |
-
"""Handles the full streaming lifecycle with
|
| 85 |
url = f"https://api.replicate.com/v1/models/{replicate_model_id}/predictions"
|
| 86 |
headers = {"Authorization": f"Bearer {REPLICATE_API_TOKEN}", "Content-Type": "application/json"}
|
| 87 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 88 |
async with httpx.AsyncClient(timeout=60.0) as client:
|
| 89 |
try:
|
| 90 |
response = await client.post(url, headers=headers, json={"input": input_payload, "stream": True})
|
|
@@ -113,11 +117,8 @@ async def stream_replicate_sse(replicate_model_id: str, input_payload: dict):
|
|
| 113 |
if line.startswith("event:"):
|
| 114 |
current_event = line[len("event:"):].strip()
|
| 115 |
elif line.startswith("data:"):
|
| 116 |
-
#
|
| 117 |
-
raw_data = line[5:] # Remove "data:"
|
| 118 |
-
|
| 119 |
-
# Remove only the optional single space after data: if present
|
| 120 |
-
# This is per SSE spec and preserves actual content spaces
|
| 121 |
if raw_data.startswith(" "):
|
| 122 |
data_content = raw_data[1:] # Remove the first space only
|
| 123 |
else:
|
|
@@ -129,13 +130,13 @@ async def stream_replicate_sse(replicate_model_id: str, input_payload: dict):
|
|
| 129 |
|
| 130 |
content_token = ""
|
| 131 |
try:
|
| 132 |
-
# Handle JSON-encoded strings properly
|
| 133 |
content_token = json.loads(data_content)
|
| 134 |
except (json.JSONDecodeError, TypeError):
|
| 135 |
-
# Handle plain text tokens
|
| 136 |
content_token = data_content
|
| 137 |
|
| 138 |
-
|
| 139 |
chunk = {
|
| 140 |
"choices": [{
|
| 141 |
"delta": {"content": content_token},
|
|
@@ -145,15 +146,18 @@ async def stream_replicate_sse(replicate_model_id: str, input_payload: dict):
|
|
| 145 |
"native_finish_reason": None
|
| 146 |
}],
|
| 147 |
"created": int(time.time()),
|
| 148 |
-
"id": f"gen-{int(time.time())}-{prediction_id[-12:]}",
|
| 149 |
"model": replicate_model_id,
|
| 150 |
"object": "chat.completion.chunk",
|
| 151 |
"provider": "Anthropic" if "anthropic" in replicate_model_id else "Replicate"
|
| 152 |
}
|
| 153 |
-
# FIXED: Yield only the JSON data, let EventSourceResponse handle the SSE formatting
|
| 154 |
yield json.dumps(chunk)
|
| 155 |
|
| 156 |
elif current_event == "done":
|
|
|
|
|
|
|
|
|
|
|
|
|
| 157 |
# Send usage chunk before done
|
| 158 |
usage_chunk = {
|
| 159 |
"choices": [{
|
|
@@ -170,7 +174,7 @@ async def stream_replicate_sse(replicate_model_id: str, input_payload: dict):
|
|
| 170 |
"provider": "Anthropic" if "anthropic" in replicate_model_id else "Replicate",
|
| 171 |
"usage": {
|
| 172 |
"cache_discount": 0,
|
| 173 |
-
"completion_tokens":
|
| 174 |
"completion_tokens_details": {"image_tokens": 0, "reasoning_tokens": 0},
|
| 175 |
"cost": 0,
|
| 176 |
"cost_details": {
|
|
@@ -178,11 +182,12 @@ async def stream_replicate_sse(replicate_model_id: str, input_payload: dict):
|
|
| 178 |
"upstream_inference_cost": None,
|
| 179 |
"upstream_inference_prompt_cost": 0
|
| 180 |
},
|
| 181 |
-
"input_tokens":
|
| 182 |
"is_byok": False,
|
| 183 |
-
"prompt_tokens":
|
| 184 |
"prompt_tokens_details": {"audio_tokens": 0, "cached_tokens": 0},
|
| 185 |
-
"total_tokens":
|
|
|
|
| 186 |
}
|
| 187 |
}
|
| 188 |
yield json.dumps(usage_chunk)
|
|
@@ -226,19 +231,33 @@ async def create_chat_completion(request: OpenAIChatCompletionRequest):
|
|
| 226 |
if request.stream:
|
| 227 |
return EventSourceResponse(stream_replicate_sse(SUPPORTED_MODELS[request.model], replicate_input), media_type="text/event-stream")
|
| 228 |
|
| 229 |
-
# Non-streaming fallback
|
| 230 |
url = f"https://api.replicate.com/v1/models/{SUPPORTED_MODELS[request.model]}/predictions"
|
| 231 |
headers = {"Authorization": f"Bearer {REPLICATE_API_TOKEN}", "Content-Type": "application/json", "Prefer": "wait=120"}
|
|
|
|
|
|
|
| 232 |
async with httpx.AsyncClient() as client:
|
| 233 |
try:
|
| 234 |
resp = await client.post(url, headers=headers, json={"input": replicate_input}, timeout=130.0)
|
| 235 |
resp.raise_for_status()
|
| 236 |
pred = resp.json()
|
| 237 |
output = "".join(pred.get("output", []))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 238 |
return {
|
| 239 |
"id": pred.get("id"), "object": "chat.completion", "created": int(time.time()), "model": request.model,
|
| 240 |
"choices": [{"index": 0, "message": {"role": "assistant", "content": output}, "finish_reason": "stop"}],
|
| 241 |
-
"usage": {
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 242 |
}
|
| 243 |
except httpx.HTTPStatusError as e:
|
| 244 |
raise HTTPException(status_code=e.response.status_code, detail=f"Error from Replicate API: {e.response.text}")
|
|
|
|
| 17 |
raise ValueError("REPLICATE_API_TOKEN environment variable not set.")
|
| 18 |
|
| 19 |
# FastAPI Init
|
| 20 |
+
app = FastAPI(title="Replicate to OpenAI Compatibility Layer", version="9.1.0 (Enhanced Token Tracking)")
|
| 21 |
|
| 22 |
# --- Pydantic Models ---
|
| 23 |
class ModelCard(BaseModel):
|
|
|
|
| 81 |
return payload
|
| 82 |
|
| 83 |
async def stream_replicate_sse(replicate_model_id: str, input_payload: dict):
|
| 84 |
+
"""Handles the full streaming lifecycle with enhanced token tracking and timing."""
|
| 85 |
url = f"https://api.replicate.com/v1/models/{replicate_model_id}/predictions"
|
| 86 |
headers = {"Authorization": f"Bearer {REPLICATE_API_TOKEN}", "Content-Type": "application/json"}
|
| 87 |
|
| 88 |
+
start_time = time.time()
|
| 89 |
+
prompt_tokens = len(input_payload.get("prompt", "")) // 4 # Rough estimation
|
| 90 |
+
completion_tokens = 0
|
| 91 |
+
|
| 92 |
async with httpx.AsyncClient(timeout=60.0) as client:
|
| 93 |
try:
|
| 94 |
response = await client.post(url, headers=headers, json={"input": input_payload, "stream": True})
|
|
|
|
| 117 |
if line.startswith("event:"):
|
| 118 |
current_event = line[len("event:"):].strip()
|
| 119 |
elif line.startswith("data:"):
|
| 120 |
+
# Remove "data:" prefix and optional space
|
| 121 |
+
raw_data = line[5:] # Remove "data:"
|
|
|
|
|
|
|
|
|
|
| 122 |
if raw_data.startswith(" "):
|
| 123 |
data_content = raw_data[1:] # Remove the first space only
|
| 124 |
else:
|
|
|
|
| 130 |
|
| 131 |
content_token = ""
|
| 132 |
try:
|
| 133 |
+
# Handle JSON-encoded strings properly
|
| 134 |
content_token = json.loads(data_content)
|
| 135 |
except (json.JSONDecodeError, TypeError):
|
| 136 |
+
# Handle plain text tokens
|
| 137 |
content_token = data_content
|
| 138 |
|
| 139 |
+
completion_tokens += 1
|
| 140 |
chunk = {
|
| 141 |
"choices": [{
|
| 142 |
"delta": {"content": content_token},
|
|
|
|
| 146 |
"native_finish_reason": None
|
| 147 |
}],
|
| 148 |
"created": int(time.time()),
|
| 149 |
+
"id": f"gen-{int(time.time())}-{prediction_id[-12:]}",
|
| 150 |
"model": replicate_model_id,
|
| 151 |
"object": "chat.completion.chunk",
|
| 152 |
"provider": "Anthropic" if "anthropic" in replicate_model_id else "Replicate"
|
| 153 |
}
|
|
|
|
| 154 |
yield json.dumps(chunk)
|
| 155 |
|
| 156 |
elif current_event == "done":
|
| 157 |
+
# Calculate timing
|
| 158 |
+
end_time = time.time()
|
| 159 |
+
inference_time = end_time - start_time
|
| 160 |
+
|
| 161 |
# Send usage chunk before done
|
| 162 |
usage_chunk = {
|
| 163 |
"choices": [{
|
|
|
|
| 174 |
"provider": "Anthropic" if "anthropic" in replicate_model_id else "Replicate",
|
| 175 |
"usage": {
|
| 176 |
"cache_discount": 0,
|
| 177 |
+
"completion_tokens": completion_tokens,
|
| 178 |
"completion_tokens_details": {"image_tokens": 0, "reasoning_tokens": 0},
|
| 179 |
"cost": 0,
|
| 180 |
"cost_details": {
|
|
|
|
| 182 |
"upstream_inference_cost": None,
|
| 183 |
"upstream_inference_prompt_cost": 0
|
| 184 |
},
|
| 185 |
+
"input_tokens": prompt_tokens,
|
| 186 |
"is_byok": False,
|
| 187 |
+
"prompt_tokens": prompt_tokens,
|
| 188 |
"prompt_tokens_details": {"audio_tokens": 0, "cached_tokens": 0},
|
| 189 |
+
"total_tokens": prompt_tokens + completion_tokens,
|
| 190 |
+
"inference_time": round(inference_time, 3)
|
| 191 |
}
|
| 192 |
}
|
| 193 |
yield json.dumps(usage_chunk)
|
|
|
|
| 231 |
if request.stream:
|
| 232 |
return EventSourceResponse(stream_replicate_sse(SUPPORTED_MODELS[request.model], replicate_input), media_type="text/event-stream")
|
| 233 |
|
| 234 |
+
# Non-streaming fallback with usage data
|
| 235 |
url = f"https://api.replicate.com/v1/models/{SUPPORTED_MODELS[request.model]}/predictions"
|
| 236 |
headers = {"Authorization": f"Bearer {REPLICATE_API_TOKEN}", "Content-Type": "application/json", "Prefer": "wait=120"}
|
| 237 |
+
start_time = time.time()
|
| 238 |
+
|
| 239 |
async with httpx.AsyncClient() as client:
|
| 240 |
try:
|
| 241 |
resp = await client.post(url, headers=headers, json={"input": replicate_input}, timeout=130.0)
|
| 242 |
resp.raise_for_status()
|
| 243 |
pred = resp.json()
|
| 244 |
output = "".join(pred.get("output", []))
|
| 245 |
+
|
| 246 |
+
# Calculate timing and tokens
|
| 247 |
+
end_time = time.time()
|
| 248 |
+
inference_time = end_time - start_time
|
| 249 |
+
prompt_tokens = len(input_payload.get("prompt", "")) // 4 # Rough estimation
|
| 250 |
+
completion_tokens = len(output) // 4 # Rough estimation
|
| 251 |
+
|
| 252 |
return {
|
| 253 |
"id": pred.get("id"), "object": "chat.completion", "created": int(time.time()), "model": request.model,
|
| 254 |
"choices": [{"index": 0, "message": {"role": "assistant", "content": output}, "finish_reason": "stop"}],
|
| 255 |
+
"usage": {
|
| 256 |
+
"prompt_tokens": prompt_tokens,
|
| 257 |
+
"completion_tokens": completion_tokens,
|
| 258 |
+
"total_tokens": prompt_tokens + completion_tokens,
|
| 259 |
+
"inference_time": round(inference_time, 3)
|
| 260 |
+
}
|
| 261 |
}
|
| 262 |
except httpx.HTTPStatusError as e:
|
| 263 |
raise HTTPException(status_code=e.response.status_code, detail=f"Error from Replicate API: {e.response.text}")
|