File size: 8,892 Bytes
89b138d ea53c08 89b138d 415ec30 89b138d 415ec30 e014ad9 89b138d 2fc646f 89b138d 2fc646f 89b138d 2fc646f 89b138d 2fc646f 89b138d 2fc646f 415ec30 89b138d 415ec30 e014ad9 89b138d 415ec30 e014ad9 415ec30 2fc646f e014ad9 415ec30 e014ad9 415ec30 63b36c2 415ec30 e014ad9 415ec30 1120bba 89b138d 415ec30 89b138d e014ad9 415ec30 89b138d ea53c08 e014ad9 89b138d ea53c08 415ec30 89b138d e014ad9 415ec30 e014ad9 de4d166 415ec30 e014ad9 de4d166 e014ad9 97aa2c2 89b138d 415ec30 89b138d e014ad9 415ec30 89b138d e014ad9 415ec30 e014ad9 89b138d 415ec30 e014ad9 89b138d e014ad9 415ec30 e014ad9 415ec30 e014ad9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 |
import os
import httpx
import json
import time
from fastapi import FastAPI, HTTPException
from fastapi.responses import JSONResponse
from pydantic import BaseModel, Field
from typing import List, Dict, Any, Optional, Union, Literal
from dotenv import load_dotenv
from sse_starlette.sse import EventSourceResponse
# Load environment variables
load_dotenv()
REPLICATE_API_TOKEN = os.getenv("REPLICATE_API_TOKEN")
if not REPLICATE_API_TOKEN:
raise ValueError("REPLICATE_API_TOKEN environment variable not set.")
# FastAPI Init
app = FastAPI(title="Replicate to OpenAI Compatibility Layer", version="4.1.0 (Context Fixed)")
# --- Pydantic Models ---
class ModelCard(BaseModel):
id: str; object: str = "model"; created: int = Field(default_factory=lambda: int(time.time())); owned_by: str = "replicate"
class ModelList(BaseModel):
object: str = "list"; data: List[ModelCard] = []
class ChatMessage(BaseModel):
role: Literal["system", "user", "assistant", "tool"]; content: Union[str, List[Dict[str, Any]]]
class OpenAIChatCompletionRequest(BaseModel):
model: str; messages: List[ChatMessage]; temperature: Optional[float] = 0.7; top_p: Optional[float] = 1.0; max_tokens: Optional[int] = None; stream: Optional[bool] = False
# --- Supported Models ---
# Maps OpenAI-friendly names to Replicate model paths
SUPPORTED_MODELS = {
"llama3-8b-instruct": "meta/meta-llama-3-8b-instruct",
"claude-4.5-haiku": "anthropic/claude-4.5-haiku"
# You can add more models here
}
# --- Core Logic ---
def prepare_replicate_input(request: OpenAIChatCompletionRequest) -> Dict[str, Any]:
"""
Formats the input for Replicate API, preserving the conversational context.
"""
payload = {}
# --- CONTEXT FIX START ---
# Modern chat models on Replicate (like Llama 3 and Claude 4.5) expect
# the 'messages' array directly, just like OpenAI.
# We no longer need to flatten the conversation into a single prompt string.
# Extract system prompt if it exists, as some models take it as a separate parameter.
messages_for_payload = []
system_prompt = None
for msg in request.messages:
if msg.role == "system":
# Claude and some other models prefer a dedicated system_prompt field.
system_prompt = str(msg.content)
else:
# Handle user/assistant roles. Convert Pydantic model to a standard dict.
messages_for_payload.append(msg.dict())
# The main input for conversation is the 'messages' array.
payload["messages"] = messages_for_payload
# Add system_prompt to the payload if it was found.
if system_prompt:
payload["system_prompt"] = system_prompt
# --- CONTEXT FIX END ---
# Map common OpenAI parameters to Replicate equivalents
# Note: Replicate's parameter for max tokens is often 'max_new_tokens'
if request.max_tokens: payload["max_new_tokens"] = request.max_tokens
if request.temperature: payload["temperature"] = request.temperature
if request.top_p: payload["top_p"] = request.top_p
return payload
async def stream_replicate_sse(replicate_model_id: str, input_payload: dict):
"""Handles the full streaming lifecycle using standard Replicate endpoints."""
# 1. Start Prediction
url = f"https://api.replicate.com/v1/models/{replicate_model_id}/predictions"
headers = {"Authorization": f"Bearer {REPLICATE_API_TOKEN}", "Content-Type": "application/json"}
async with httpx.AsyncClient(timeout=60.0) as client:
try:
# Request a streaming prediction
response = await client.post(url, headers=headers, json={"input": input_payload, "stream": True})
response.raise_for_status()
prediction = response.json()
stream_url = prediction.get("urls", {}).get("stream")
prediction_id = prediction.get("id", "stream-unknown")
if not stream_url:
yield json.dumps({"error": {"message": "Model did not return a stream URL."}})
return
except httpx.HTTPStatusError as e:
error_details = e.response.text
try:
# Try to parse the error for a cleaner message
error_json = e.response.json()
error_details = error_json.get("detail", error_details)
except json.JSONDecodeError:
pass # Use raw text if not JSON
yield json.dumps({"error": {"message": f"Upstream Error: {error_details}", "type": "replicate_error"}})
return
# 2. Connect to the provided Stream URL and process Server-Sent Events (SSE)
try:
async with client.stream("GET", stream_url, headers={"Accept": "text/event-stream"}, timeout=None) as sse:
current_event = None
async for line in sse.aiter_lines():
if line.startswith("event:"):
current_event = line[len("event:"):].strip()
elif line.startswith("data:"):
data = line[len("data:"):].strip()
if current_event == "output":
# The 'output' event for chat models sends one token at a time as a plain string.
# We don't need to parse it as JSON.
if data: # Ensure we don't send empty chunks
chunk = {
"id": prediction_id, "object": "chat.completion.chunk", "created": int(time.time()), "model": replicate_model_id,
"choices": [{"index": 0, "delta": {"content": data}, "finish_reason": None}]
}
yield json.dumps(chunk)
elif current_event == "done":
# The 'done' event signals the end of the stream.
break
except httpx.ReadTimeout:
# Handle cases where the stream times out
yield json.dumps({"error": {"message": "Stream timed out.", "type": "timeout_error"}})
return
# 3. Send the final termination chunk in OpenAI format
final_chunk = {
"id": prediction_id, "object": "chat.completion.chunk", "created": int(time.time()), "model": replicate_model_id,
"choices": [{"index": 0, "delta": {}, "finish_reason": "stop"}]
}
yield json.dumps(final_chunk)
# Some clients (like curl) expect a final "[DONE]" message to close the connection.
yield "[DONE]"
# --- Endpoints ---
@app.get("/v1/models")
async def list_models():
"""Lists the currently supported models."""
return ModelList(data=[ModelCard(id=k) for k in SUPPORTED_MODELS.keys()])
@app.post("/v1/chat/completions")
async def create_chat_completion(request: OpenAIChatCompletionRequest):
"""Handles chat completion requests, streaming or non-streaming."""
if request.model not in SUPPORTED_MODELS:
raise HTTPException(status_code=404, detail=f"Model not found. Available models: {list(SUPPORTED_MODELS.keys())}")
replicate_id = SUPPORTED_MODELS[request.model]
replicate_input = prepare_replicate_input(request)
if request.stream:
# Return a streaming response
return EventSourceResponse(stream_replicate_sse(replicate_id, replicate_input), media_type="text/event-stream")
# Non-streaming fallback
url = f"https://api.replicate.com/v1/models/{replicate_id}/predictions"
headers = {"Authorization": f"Bearer {REPLICATE_API_TOKEN}", "Content-Type": "application/json", "Prefer": "wait=120"} # Increased wait time
async with httpx.AsyncClient() as client:
try:
resp = await client.post(url, headers=headers, json={"input": replicate_input}, timeout=130.0)
resp.raise_for_status()
pred = resp.json()
# The output of chat models is typically a list of strings (tokens)
output = "".join(pred.get("output", []))
return {
"id": pred.get("id"),
"object": "chat.completion",
"created": int(time.time()),
"model": request.model,
"choices": [{
"index": 0,
"message": {"role": "assistant", "content": output},
"finish_reason": "stop"
}],
"usage": { # Placeholder usage object
"prompt_tokens": 0,
"completion_tokens": 0,
"total_tokens": 0
}
}
except httpx.HTTPStatusError as e:
raise HTTPException(status_code=e.response.status_code, detail=f"Error from Replicate API: {e.response.text}") |