import os import json import random import streamlit as st from transformers import TextClassificationPipeline, pipeline from transformers import AutoTokenizer, AutoModelForSequenceClassification, DistilBertTokenizerFast, DistilBertForSequenceClassification emotion_model_names = ( "cardiffnlp/twitter-roberta-base-sentiment", "finiteautomata/beto-sentiment-analysis", "bhadresh-savani/distilbert-base-uncased-emotion", "siebert/sentiment-roberta-large-english" ) class ModelImplementation(object): def __init__( self, transformer_model_name, model_transformer, tokenizer_model_name, tokenizer_func, pipeline_func, parser_func, classifier_args={}, placeholders=[""] ): self.transformer_model_name = transformer_model_name self.tokenizer_model_name = tokenizer_model_name self.placeholders = placeholders self.model = model_transformer.from_pretrained(self.transformer_model_name) self.tokenizer = tokenizer_func.from_pretrained(self.tokenizer_model_name) self.classifier = pipeline_func(model=self.model, tokenizer=self.tokenizer, padding=True, truncation=True, **classifier_args) self.parser = parser_func def predict(self, val): result = self.classifier(val) return self.parser(self, result) def ParseEmotionOutput(self, result): label = result[0]['label'] score = result[0]['score'] output_func = st.info if self.transformer_model_name == "cardiffnlp/twitter-roberta-base-sentiment": if label == "LABEL_0": label = "NEGATIVE" output_func = st.error elif label == "LABEL_2": label = "POSITIVE" output_func = st.success else: label = "NEUTRAL" elif self.transformer_model_name == "finiteautomata/beto-sentiment-analysis": if label == "NEG": label = "NEGATIVE" output_func = st.error elif label == "POS": label = "POSITIVE" output_func = st.success else: label = "NEUTRAL" elif self.transformer_model_name == "bhadresh-savani/distilbert-base-uncased-emotion": if label == "sadness": output_func = st.info elif label == "joy": output_func = st.success elif label == "love": output_func = st.success elif label == "anger": output_func = st.error elif label == "fear": output_func = st.info elif label == "surprise": output_func = st.error label = label.upper() elif self.transformer_model_name == "siebert/sentiment-roberta-large-english": if label == "NEGATIVE": output_func = st.error elif label == "POSITIVE": output_func = st.success return label, score, output_func def ParsePatentOutput(self, result): return result def emotion_model_change(): st.session_state.emotion_model = ModelImplementation( st.session_state.emotion_model_name, AutoModelForSequenceClassification, st.session_state.emotion_model_name, AutoTokenizer, pipeline, ParseEmotionOutput, classifier_args={ "task" : "sentiment-analysis" }, placeholders=["@AmericanAir just landed - 3hours Late Flight - and now we need to wait TWENTY MORE MINUTES for a gate! I have patience but none for incompetence."] ) if "emotion_model_name" not in st.session_state: st.session_state.emotion_model_name = "cardiffnlp/twitter-roberta-base-sentiment" emotion_model_change() if "patent_data" not in st.session_state: f = open('./data/val.json') valData = json.load(f) f.close() patent_data = {} for num, label, abstract, claim in zip(valData["patent_numbers"],valData["labels"], valData["abstracts"], valData["claims"]): patent_data[num] = {"patent_number":num,"label":label,"abstract":abstract,"claim":claim} st.session_state.patent_data = patent_data st.session_state.patent_num = list(patent_data.keys())[0] st.session_state.weight = 0.5 st.session_state.patent_abstract_model = ModelImplementation( 'rk2546/uspto-patents-abstracts', DistilBertForSequenceClassification, 'distilbert-base-uncased', DistilBertTokenizerFast, TextClassificationPipeline, ParsePatentOutput, classifier_args={"return_all_scores":True}, ) print("Patent abstracts model initialized") st.session_state.patent_claim_model = ModelImplementation( 'rk2546/uspto-patents-claims', DistilBertForSequenceClassification, 'distilbert-base-uncased', DistilBertTokenizerFast, TextClassificationPipeline, ParsePatentOutput, classifier_args={"return_all_scores":True}, ) print("Patent claims model initialized") # Title st.title("CSGY-6613 Project") # Subtitle st.markdown("_**Ryan Kim (rk2546)**_") sentimentTab, patentTab = st.tabs([ "Emotion Analysis [Milestone #2]", "Patent Prediction [Milestone #3]" ]) with sentimentTab: st.subheader("Sentiment Analysis") if "emotion_model" not in st.session_state: st.write("Loading model...") else: model_option = st.selectbox( "What sentiment analysis model do you want to use? NOTE: Lag may occur when loading a new model!", emotion_model_names, on_change=emotion_model_change, key="emotion_model_name" ) form = st.form(key='sentiment-analysis-form') text_input = form.text_area( "Enter some text for sentiment analysis! If you just want to test it out without entering anything, just press the \"Submit\" button and the model will look at the placeholder.", placeholder=st.session_state.emotion_model.placeholders[0] ) submit = form.form_submit_button('Submit') if submit: if text_input is None or len(text_input.strip()) == 0: to_eval = st.session_state.emotion_model.placeholders[0] else: to_eval = text_input.strip() label, score, output_func = st.session_state.emotion_model.predict(to_eval) output_func("**{}**: {}".format(label,score)) with patentTab: st.subheader("USPTO Patent Evaluation") st.markdown("Below are two inputs - one for an **ABSTRACT** and another for a list of **CLAIMS**. Enter both and select the \"Submit\" button to evaluate the patenteability of your idea.") patent_select_list = list(st.session_state.patent_data.keys()) patent_index_option = st.selectbox( "Want to pre-populate with an existing patent? Select the index number of below.", patent_select_list, key="patent_num", ) if "patent_abstract_model" not in st.session_state or "patent_claim_model" not in st.session_state: st.write("Loading models...") else: with st.form(key='patent-form'): col1, col2 = st.columns(2) with col1: abstract_input = st.text_area( "Enter the abstract of the patent below", placeholder=st.session_state.patent_data[st.session_state.patent_num]["abstract"], height=200 ) with col2: claim_input = st.text_area( "Enter the claims of the patent below", placeholder=st.session_state.patent_data[st.session_state.patent_num]["claim"], height=200 ) weight_val = st.slider( "How much do the abstract and claims weight when aggregating a total softmax score?", min_value=-1.0, max_value=1.0, value=0.5, ) submit = st.form_submit_button('Submit') if submit: is_custom = False if abstract_input is None or len(abstract_input.strip()) == 0: abstract_to_eval = st.session_state.patent_data[st.session_state.patent_num]["abstract"].strip() else: abstract_to_eval = abstract_input.strip() is_custom = True if claim_input is None or len(claim_input.strip()) == 0: claim_to_eval = st.session_state.patent_data[st.session_state.patent_num]["claim"].strip() else: claim_to_eval = claim_input.strip() is_custom = True abstract_response = st.session_state.patent_abstract_model.predict(abstract_to_eval) claim_response = st.session_state.patent_claim_model.predict(claim_to_eval) claim_weight = (1+weight_val)/2 abstract_weight = 1-claim_weight aggregate_score = [ {'label':'REJECTED','score':abstract_response[0][0]['score']*abstract_weight + claim_response[0][0]['score']*claim_weight}, {'label':'ACCEPTED','score':abstract_response[0][1]['score']*abstract_weight + claim_response[0][1]['score']*claim_weight} ] aggregate_score_sorted = sorted(aggregate_score, key=lambda d: d['score'], reverse=True) answerCol1, answerCol2, answerCol3 = st.columns(3) with answerCol1: st.slider( "Abstract Acceptance Likelihood", min_value=0.0, max_value=100.0, value=abstract_response[0][1]["score"]*100.0, disabled=True ) with answerCol2: output_func = st.info if aggregate_score_sorted[0]["label"] == "REJECTED": output_func = st.error else: output_func = st.success output_func(""" **Final Rating: {}** {}% """.format(aggregate_score_sorted[0]["label"],aggregate_score_sorted[0]["score"]*100.0)) with answerCol3: st.slider( "Claim Acceptance Likelihood", min_value=0.0, max_value=100.0, value=claim_response[0][1]["score"]*100.0, disabled=True ) #if not is_custom: # st.markdown('**Original Score:**') # st.markdown(st.session_state.patent_data[st.session_state.patent_num]["label"]) st.write("")