#made by Ryan Joseph from datetime import date from datetime import datetime import requests import streamlit as st import plotly.express as px import pandas as pd from courtCoordinates import CourtCoordinates from basketballShot import BasketballShot import pandas as pd from sportsdataverse.nba.nba_pbp import espn_nba_pbp import plotly.graph_objects as go # Import Plotly graph objects separately import time import re import sportsdataverse from streamlit_plotly_events import plotly_events from datetime import datetime, timedelta def display_player_image(player_id, width2, caption2): # Construct the URL for the player image using the player ID image_url = f"https://a.espncdn.com/combiner/i?img=/i/headshots/nba/players/full/{player_id}.png&w=350&h=254" # Check if the image URL returns a successful response response = requests.head(image_url) if response.status_code == 200: # If image is available, display it st.markdown( f'
' f'' f'

{caption2}

' f'
', unsafe_allow_html=True ) # st.image(image_url, width=width2, caption=caption2) else: image_url = "https://cdn.nba.com/headshots/nba/latest/1040x760/fallback.png" st.markdown( f'
' f'' f'

{"Image Unavailable"}

' f'
', unsafe_allow_html=True ) def filter_player_actions(df, player_names): # Combine player names into a single regex pattern pattern = '|'.join([rf'{name}\s+(made|make|missed|miss|makes|misses)' for name in player_names]) # Apply the filter using regex matching filtered_df = df[df['text'].str.contains(pattern, flags=re.IGNORECASE, regex=True)] return filtered_df def extract_number_from_string(s): # Regular expression pattern to find a number in the string pattern = r'\b\d+\b' # Using re.findall to get all numbers matching the pattern numbers = re.findall(pattern, s) # If numbers list is not empty, return the first number found (as a string) if numbers: return int(numbers[0]) # Convert the first number to an integer else: return 0 # Return 0 if no numbers were found def fetch_and_save_nba_pbp(game_id, output_file): try: # Fetch play-by-play data pbp_data = espn_nba_pbp(game_id) # Extract plays information plays = pbp_data['plays'] # Convert to DataFrame df_plays = pd.DataFrame(plays) # Save to CSV df_plays.to_csv(output_file, index=False) print(f"Successfully saved play-by-play data to {output_file}") except Exception as e: print(f"Error fetching or saving play-by-play data: {e}") def map_team_to_abbreviation(team_name): team_mapping = { 'Boston Celtics': 'bos', 'Brooklyn Nets': 'bkn', 'New York Knicks': 'ny', 'Philadelphia 76ers': 'phi', 'Toronto Raptors': 'tor', 'Chicago Bulls': 'chi', 'Cleveland Cavaliers': 'cle', 'Detroit Pistons': 'det', 'Indiana Pacers': 'ind', 'Milwaukee Bucks': 'mil', 'Denver Nuggets': 'den', 'Minnesota Timberwolves': 'min', 'Oklahoma City Thunder': 'okc', 'Portland Trail Blazers': 'por', 'Utah Jazz': 'utah', 'Golden State Warriors': 'gs', 'LA Clippers': 'lac', 'Los Angeles Lakers': 'lal', 'Phoenix Suns': 'phx', 'Sacramento Kings': 'sac', 'Atlanta Hawks': 'atl', 'Charlotte Hornets': 'cha', 'Miami Heat': 'mia', 'Orlando Magic': 'orl', 'Washington Wizards': 'wsh', 'Dallas Mavericks': 'dal', 'Houston Rockets': 'hou', 'Memphis Grizzlies': 'mem', 'New Orleans Pelicans': 'no', 'San Antonio Spurs': 'sa' } return team_mapping.get(team_name, 'Unknown Team') def display_team_image(teamname, width2): # Construct the URL for the player image using the player ID image_url = f"https://a.espncdn.com/combiner/i?img=/i/teamlogos/nba/500/{teamname}.png&scale=crop&cquality=40&location=origin&w=80&h=80" # Check if the image URL returns a successful response response = requests.head(image_url) if response.status_code == 200: # If image is available, display it st.markdown( f'
' f'' f'

' f'
', unsafe_allow_html=True ) # st.image(image_url, width=width2, caption=caption2) else: image_url = "https://a.espncdn.com/combiner/i?img=/i/teamlogos/leagues/500/nba.png&w=250&h=250" st.markdown( f'
' f'' f'

{"Image Unavailable"}

' f'
', unsafe_allow_html=True ) st.set_page_config(page_title="3D NBA Shot Visualizer", page_icon='https://i.imgur.com/3oGJTcf.png',layout="wide") st.markdown(f'

3D NBA Shot Visualizer

', unsafe_allow_html=True) st.sidebar.markdown('
3D NBA Shot Visualizer
', unsafe_allow_html=True) st.sidebar.image("https://i.imgur.com/3oGJTcf.png") input_csv = 'nba_play_by_play.csv' # Replace with your actual CSV file path output_csv = 'nba_play_by_play.csv' # Replace with desired output file path # Determine the current year current_year = date.today().year # Create a selectbox in Streamlit with options from 2002 to the current year selected_season = st.selectbox('Select a season', [''] + list(range(2002, current_year + 1)), index=0) if selected_season: st.sidebar.markdown('
Filters
', unsafe_allow_html=True) st.sidebar.subheader('') from sportsdataverse.nba.nba_loaders import load_nba_schedule # Load NBA schedule for the 2007 season nba_df = load_nba_schedule(seasons=[selected_season], return_as_pandas=True) # Print or inspect the loaded DataFrame nba_df.to_csv('season.csv') # Load the CSV file csv_file = 'season.csv' df = pd.read_csv(csv_file) games = [] for index, row in df.iterrows(): # Concatenate home team and away team names for the current row ddate2 = row['start_date'] parsed_date2 = datetime.strptime(ddate2, "%Y-%m-%dT%H:%MZ") # Format the datetime object into the desired string format formatted_date2 = parsed_date2.strftime("%m/%d/%Y") typegame = row['notes_headline'] if selected_season > 2003 and pd.isna(typegame): typegame = 'Regular Season' elif selected_season <= 2003 and pd.isna(typegame): typegame = '' game = f"{row['away_display_name']} @ {row['home_display_name']} - {typegame} - {formatted_date2} - {row['game_id']}" # Append the concatenated string to the games list games.append(game)# Create a selectbox in Streamlit games = st.selectbox('Select game', [''] + games) parts = games.split('-') # Extract the last element (which contains the number) and strip any extra whitespace id = parts[-1].strip() st.write('') if id: date1 = parts[-2].strip() fdf = pd.read_csv('season.csv') filtered_df = fdf[fdf['game_id'] == id] # Assuming 'date' is the column you want to extract if not filtered_df.empty: ddate = filtered_df['date'].iloc[0] parsed_date = datetime.strptime(ddate, "%Y-%m-%dT%H:%MZ") # Format the datetime object into the desired string format formatted_date = parsed_date.strftime("%m/%d/%Y") fetch_and_save_nba_pbp(game_id=id,output_file=output_csv) df = pd.read_csv(input_csv) # Replace 1 with True and 0 with False in 'SHOT_MADE_FLAG' column team_id = df['homeTeamId'][1] # Write the modified DataFrame back to CSV # df.to_csv(output_csv, index=False) # Define a function to apply to each row def label_team(row): if row['team.id'] == team_id: return 'home' else: return 'away' # Apply the function to create a new column 'team' df['team'] = df.apply(label_team, axis=1) df['home_color'] = '0022B4' df['away_color'] = '99bfe5' df = df[df['shootingPlay'] == True] df = df[~df['type.text'].str.contains('free throw', case=False, na=False)] df['Shot Distance'] = df['text'].apply(extract_number_from_string) unique_periods = df['period.displayValue'].unique() uniqueshots = df['type.text'].unique() df.to_csv(output_csv, index=False) Make = st.sidebar.toggle('Make/Miss') if Make == 1: makemiss = st.sidebar.selectbox('',['Make','Miss']) if makemiss == 'Make': rmakemiss = True else: rmakemiss = False Quarter = st.sidebar.toggle('Quarter') if Quarter == 1: quart = st.sidebar.multiselect('',unique_periods) Player = st.sidebar.toggle('Players') if Player == 1: import sportsdataverse.nba.nba_game_rosters as nba_rosters roster_data = nba_rosters.espn_nba_game_rosters(game_id=id, return_as_pandas=True) roster_data = roster_data[roster_data['did_not_play'] != True] names = [] for index, row2 in roster_data.iterrows(): name = row2['full_name'] team = row2['team_display_name'] player = name + " - " + team names.append(player) # player_names = roster_data['full_name'].tolist() players = st.sidebar.multiselect('',names) player_names = [] for player_info in players: # Split each player_info string by ' - ' to separate player name and team player_name = player_info.split(' - ')[0] player_names.append(player_name) Shottype = st.sidebar.toggle('Shot Type') if Shottype == 1: shottype = st.sidebar.multiselect('',uniqueshots) Points = st.sidebar.toggle('Points') if Points == 1: points = st.sidebar.selectbox('',['2','3']) Time = st.sidebar.toggle('Time') if Time == 1: timemin, timemax = st.sidebar.slider("Time Remaining (Minutes)", 0, 15, (0, 15)) Shotdist = st.sidebar.toggle('Shot Distance') if Shotdist == 1: shotdistance_min, shotdistance_max = st.sidebar.slider("Shot Distance", 0, 94, (0, 94)) df2 = pd.read_csv('nba_play_by_play.csv') last_hyphen_index = games.rfind('-') result = games[:last_hyphen_index].strip() st.markdown(f'

{result}

', unsafe_allow_html=True) # st.markdown(f'

{df["homeTeamName"].iloc[0]} {df["homeTeamMascot"].iloc[0]} vs {df["awayTeamName"].iloc[0]} {df["awayTeamMascot"].iloc[0]}

', unsafe_allow_html=True) st.subheader('') hometeam = df['homeTeamName'].iloc[0] + " " + df['homeTeamMascot'].iloc[0] awayteam = df['awayTeamName'].iloc[0] + " " + df['awayTeamMascot'].iloc[0] homeabbrev = map_team_to_abbreviation(hometeam) awayabbrev = map_team_to_abbreviation(awayteam) col1, col2 = st.columns(2) with col1: display_team_image(awayabbrev,300) with col2: display_team_image(homeabbrev,300) # # create a connection # @st.cache_resource # def create_session_object(): # connection_parameters = { # "account": "", # "user": "", # "password": "", # "role": "", # "warehouse": "", # "database": "", # "schema": "= shotdistance_min) & (game_shots_df['Shot Distance'] <= shotdistance_max)] if Player: game_shots_df = filter_player_actions(game_shots_df, player_names) # game_shots_df = game_shots_df[game_shots_df['text'].str.contains('|'.join(player_names), case=False, na=False)] if Shottype: game_shots_df = game_shots_df[game_shots_df['type.text'].isin(shottype)] if Points: game_shots_df = game_shots_df[game_shots_df['scoreValue'] == int(points)] if Time: game_shots_df = game_shots_df[(game_shots_df['clock.minutes'] >= timemin) & (game_shots_df['clock.minutes'] <= timemax)] if Make: game_shots_df = game_shots_df[game_shots_df['scoringPlay'] == rmakemiss] # st.title(game_text) color_mapping = { 'home': home_color, 'away': away_color } # draw court lines court = CourtCoordinates() court_lines_df = court.get_court_lines() fig = px.line_3d( data_frame=court_lines_df, x='x', y='y', z='z', line_group='line_group', color='color', color_discrete_map={ 'court': '#000000', 'hoop': '#e47041', 'net': '#D3D3D3', 'backboard': 'gray' } ) fig.update_traces(hovertemplate=None, hoverinfo='skip', showlegend=False) game_coords_df = pd.DataFrame() # generate coordinates for shot paths homecount = 0 hometotal = 0 awaycount = 0 awaytotal = 0 for index, row in game_shots_df.iterrows(): if row['team.id'] == team_id: hometotal+=1 if row['scoringPlay'] == True: homecount+=1 elif row['team.id'] != team_id: awaytotal+=1 if row['scoringPlay'] == True: awaycount+=1 shot = BasketballShot( shot_start_x=row['coordinate.x'], shot_start_y=row['coordinate.y'], shot_id=row['sequenceNumber'], play_description=row['text'], shot_made=row['scoringPlay'], team=row['team'], quarter=row['period.displayValue'], time=row['clock.displayValue']) # quarter=row['period.displayValue']) shot_df = shot.get_shot_path_coordinates() game_coords_df = pd.concat([game_coords_df, shot_df]) # draw shot paths color_map={'away':away_color,'home':home_color2} shot_path_fig = px.line_3d( data_frame=game_coords_df, x='x', y='y', z='z', line_group='line_id', color='team', color_discrete_map=color_map, custom_data=['description', 'z','quarter','time'] ) hovertemplate= '%{customdata[0]}
%{customdata[2]} - %{customdata[3]}
Height: %{customdata[1]} ft' hovertemplate2 = '%{customdata[0]}
%{customdata[2]} - %{customdata[3]}' shot_path_fig.update_traces(opacity=0.55, hovertemplate=hovertemplate, showlegend=False) # shot start scatter plots game_coords_start = game_coords_df[game_coords_df['shot_coord_index'] == 0] symbol_map={'made': 'circle-open', 'missed': 'cross'} color_map={'away':away_color2,'home':home_color} shot_start_fig = px.scatter_3d( data_frame=game_coords_start, x='x', y='y', z='z', custom_data=['description', 'z','quarter','time'], color='team', color_discrete_map=color_map, # color_discrete_map=color_mapping, symbol='shot_made', symbol_map=symbol_map ) symbol_map2={'made': 'circle', 'missed': 'cross'} shot_start_fig2 = px.scatter_3d( data_frame=game_coords_start, x='x', y='y', z='z', custom_data=['description', 'z','quarter','time'], color='team', color_discrete_map=color_map, # color_discrete_map=color_mapping, symbol='shot_made', symbol_map=symbol_map2 ) shot_start_fig.update_traces(marker_size=10, hovertemplate=hovertemplate2) shot_start_fig2.update_traces(marker_size=7,hovertemplate=hovertemplate2) # add shot scatter plot to court plot for i in range(len(shot_start_fig.data)): fig.add_trace(shot_start_fig.data[i]) fig.add_trace(shot_start_fig2.data[i]) # add shot line plot to court plot for i in range(len(shot_path_fig.data)): fig.add_trace(shot_path_fig.data[i]) # graph styling fig.update_traces(line=dict(width=5)) fig.update_layout( margin=dict(l=20, r=20, t=20, b=20), scene_aspectmode="data", height=600, scene_camera=dict( eye=dict(x=1.3, y=0, z=0.7) ), scene=dict( xaxis=dict(title='', showticklabels=False, showgrid=False), yaxis=dict(title='', showticklabels=False, showgrid=False), zaxis=dict(title='', showticklabels=False, showgrid=False, showbackground=True, backgroundcolor='#d2a679'), ), showlegend=False, legend=dict( yanchor='top', y=0.05, x=0.2, xanchor='left', orientation='h', font=dict(size=15, color='gray'), bgcolor='rgba(0, 0, 0, 0)', title='', itemsizing='constant' ) ) # st.plotly_chart(fig, use_container_width=True) play = st.sidebar.button('Play by play') normalplot = st.sidebar.button('Normal Plot') if normalplot: st.experimental_rerun() if play: # Draw basketball court lines court = CourtCoordinates() court_lines_df = court.get_court_lines() fig = px.line_3d( data_frame=court_lines_df, x='x', y='y', z='z', line_group='line_group', color='color', color_discrete_map={ 'court': '#000000', 'hoop': '#e47041', 'net': '#D3D3D3', 'backboard': 'gray' } ) fig.update_traces(hovertemplate=None, hoverinfo='skip', showlegend=False) fig.update_traces(line=dict(width=5)) # Apply layout settings fig.update_layout( margin=dict(l=20, r=20, t=20, b=20), scene_aspectmode="data", height=600, scene_camera=dict( eye=dict(x=1.5, y=0, z=0.2) ), scene=dict( xaxis=dict(title='', showticklabels=False, showgrid=False), yaxis=dict(title='', showticklabels=False, showgrid=False), zaxis=dict(title='', showticklabels=False, showgrid=False, showbackground=True, backgroundcolor='#d2a679'), ) ) # Create a Streamlit placeholder for the plot placeholder = st.empty() # Prepare data filters filters = { 'period.displayValue': quart if Quarter else None, 'Shot Distance': (shotdistance_min, shotdistance_max) if Shotdist else None, 'text': players if Player else None, # 'type.text': finaltype if Shottype else None, 'scoreValue': int(points) if Points else None, 'clock.minutes': (timemin, timemax) if Time else None } filtered_shot_df = df.copy() if Quarter: filtered_shot_df = filtered_shot_df[filtered_shot_df['period.displayValue'].isin(quart)] if Shotdist: filtered_shot_df = filtered_shot_df[(filtered_shot_df['Shot Distance'] >= shotdistance_min) & (filtered_shot_df['Shot Distance'] <= shotdistance_max)] if Player: filtered_shot_df = filter_player_actions(filtered_shot_df, player_names) # game_shots_df = game_shots_df[game_shots_df['text'].str.contains('|'.join(player_names), case=False, na=False)] if Shottype: filtered_shot_df = filtered_shot_df[filtered_shot_df['type.text'].isin(shottype)] if Points: filtered_shot_df = filtered_shot_df[filtered_shot_df['scoreValue'] == int(points)] if Time: filtered_shot_df = filtered_shot_df[(filtered_shot_df['clock.minutes'] >= timemin) & (filtered_shot_df['clock.minutes'] <= timemax)] if Make: filtered_shot_df = filtered_shot_df[filtered_shot_df['scoringPlay'] == rmakemiss] # Initialize an empty list to store trace objects traces = [] message_placeholder = st.empty() message2 = st.empty() message3 = st.empty() messages = [] game_coords_df = pd.DataFrame() # Initialize empty DataFrame to store all shot coordinates traces = [] message_placeholder = st.empty() message2 = st.empty() message3 = st.empty() messages = [] for index, row in game_shots_df.iterrows(): # Assuming BasketballShot class or function to generate shot coordinates shot = BasketballShot( shot_start_x=row['coordinate.x'], shot_start_y=row['coordinate.y'], shot_id=row['sequenceNumber'], play_description=row['text'], shot_made=row['scoringPlay'], team=row['team'], quarter=row['period.displayValue'], time=row['clock.displayValue']) shot_df = shot.get_shot_path_coordinates() game_coords_df = pd.concat([game_coords_df, shot_df]) # Draw shot paths color_map = {'home': home_color2, 'away': away_color} shot_path_fig = px.line_3d( data_frame=game_coords_df, x='x', y='y', z='z', line_group='line_id', color='team', color_discrete_map=color_map, custom_data=['description', 'z', 'quarter', 'time'] ) hovertemplate = '%{customdata[0]}
%{customdata[2]} - %{customdata[3]}' shot_path_fig.update_traces(opacity=0.55, hovertemplate=hovertemplate, showlegend=False) # Draw shot start scatter plots game_coords_start = game_coords_df[game_coords_df['shot_coord_index'] == 0] symbol_map = {'made': 'circle-open', 'missed': 'cross'} color_map = {'home': home_color, 'away': away_color2} shot_start_fig = px.scatter_3d( data_frame=game_coords_start, x='x', y='y', z='z', custom_data=['description', 'z', 'quarter', 'time'], color='team', color_discrete_map=color_map, symbol='shot_made', symbol_map=symbol_map, ) shot_start_fig.update_traces(marker_size=10, hovertemplate=hovertemplate,showlegend=False) # Add shot scatter plot to the existing figure for trace in shot_start_fig.data: fig.add_trace(trace) # Add shot line plot to the existing figure for trace in shot_path_fig.data: fig.add_trace(trace) # Update layout and display the figure dynamically fig.update_traces(line=dict(width=5)) message = row['text'] message2 = row['period.displayValue'] message3 = row['clock.displayValue'] if row['scoringPlay'] == True: finalmessage = f"✅ {message} - {message2}: {message3}" else: finalmessage = f"❌ {message} - {message2}: {message3}" messages.append(finalmessage) placeholder.plotly_chart(fig, use_container_width=True) message_placeholder.text(message) if message == None: st.text('') else: message_placeholder.text(f'Latest shot: {message} - {message2}: {message3}') time.sleep(2) placeholder.plotly_chart(fig, use_container_width=True) coli1,coli2 = st.columns(2) if awaytotal != 0: awayper = (awaycount/awaytotal) * 100 awayper = round(awayper,2) else: awayper = 0 if hometotal != 0: homeper = (homecount/hometotal) * 100 homeper = round(homeper,2) else: homeper = 0 with coli1: st.markdown(f'

' f'{df["awayTeamName"].iloc[0]} {df["awayTeamMascot"].iloc[0]}: ' f'{awaycount}/{awaytotal} ({awayper}%) ' f'

', unsafe_allow_html=True) with coli2: st.markdown(f'

' f'{df["homeTeamName"].iloc[0]} {df["homeTeamMascot"].iloc[0]}: ' f'{homecount}/{hometotal} ({homeper}%) ' f'

', unsafe_allow_html=True) with st.expander('All Shots'): for msg in messages: st.text(msg) else: selected_points = plotly_events(fig, click_event=True, hover_event=False,select_event=True) if selected_season >= 2015: st.caption("Click on a marker to view the highlight video") # Display the plot # Display selected points if selected_points: for point in selected_points: # Extract point details x_val = point.get('x', 'N/A') y_val = point.get('y', 'N/A') z_val = point.get('z', 'N/A') curve_number = point.get('curveNumber', 'N/A') point_number = point.get('pointNumber', 'N/A') # Find the corresponding description based on index description = 'No description available' if point_number < len(game_coords_df): game_coords_df2 = game_coords_df[game_coords_df['x'] == x_val] game_coords_df2 = game_coords_df2[game_coords_df2['y'] == y_val] description = game_coords_df2['description'].iloc[0] time = game_coords_df2['time'].iloc[0] game2 = game_shots_df[game_shots_df['text'] == description] game2 = game2[game2['time'] == time] abbreviation = game2['homeTeamAbbrev'].iloc[0] abbreviation2 = game2['awayTeamAbbrev'].iloc[0] from nba_api.stats.static import teams nba_teams = teams.get_teams() # Select the dictionary for the Celtics, which contains their team ID st.write(abbreviation) if abbreviation == 'GS': abbreviation = 'GSW' elif abbreviation == 'NO': abbreviation = 'NOP' elif abbreviation == 'NY': abbreviation = 'NYK' team = [team for team in nba_teams if team['abbreviation'] == abbreviation][0] teamidreal = team['id'] # st.write(teamidreal) from nba_api.stats.endpoints import leaguegamefinder # Query for games where the Celtics were playing gamefinder = leaguegamefinder.LeagueGameFinder(team_id_nullable=teamidreal) # The first DataFrame of those returned is what we want. games = gamefinder.get_data_frames()[0] games = games[games['MATCHUP'].str.contains(abbreviation2, na=False)] # Convert to datetime object # Convert to datetime object # st.write(game2) playerid = int(game2['participants.0.athlete.id'].iloc[0]) date_obj = datetime.strptime(date1, '%m/%d/%Y') # Convert to desired format date2 = date_obj.strftime('%Y-%m-%d') # Attempt to filter games by the original date fgames = games[games['GAME_DATE'] == date2] # Check if games DataFrame is empty if fgames.empty: # If no games found, subtract one day and filter again new_date_obj = date_obj - timedelta(days=1) date2 = new_date_obj.strftime('%Y-%m-%d') # Attempt to filter games by the new date fgames = games[games['GAME_DATE'] == date2] games = fgames # st.write(date2) # st.write(games) game_id = games['GAME_ID'].iloc[0] playid = game2['sequenceNumber'].iloc[0] headers = { 'Host': 'stats.nba.com', 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:72.0) Gecko/20100101 Firefox/72.0', 'Accept': 'application/json, text/plain, */*', 'Accept-Language': 'en-US,en;q=0.5', 'Accept-Encoding': 'gzip, deflate, br', 'x-nba-stats-origin': 'stats', 'x-nba-stats-token': 'true', 'Connection': 'keep-alive', 'Referer': 'https://stats.nba.com/', 'Pragma': 'no-cache', 'Cache-Control': 'no-cache' } event_id = playid url = 'https://stats.nba.com/stats/videoeventsasset?GameEventID={}&GameID={}'.format( event_id, game_id) r = requests.get(url, headers=headers) if r.status_code == 200: json = r.json() video_urls = json['resultSets']['Meta']['videoUrls'] playlist = json['resultSets']['playlist'] video_event = {'video': video_urls[0]['lurl'], 'desc': playlist[0]['dsc']} video = video_urls[0]['lurl'] # Display point details # st.write(game2) if selected_season >= 2015: col1,col2, = st.columns(2) with col1: display_player_image(playerid,400,'') with col2: st.write(description) st.video(video) else: st.write(description) display_player_image(playerid,400,'') nba_data = sportsdataverse.nba.espn_nba_pbp(game_id=id) # Check if 'boxscore' exists in the fetched data df = nba_data['boxscore'] teams = df['teams'] players = df['players'] def flatten_team_data(teams): flat_list = [] for team in teams: team_info = team['team'] stats = {stat['label']: stat['displayValue'] for stat in team['statistics']} stats.update({ 'team_id': team_info['id'], 'team_location': team_info['location'], 'team_name': team_info['name'], 'team_abbreviation': team_info['abbreviation'], 'team_displayName': team_info['displayName'], 'homeAway': team['homeAway'] }) flat_list.append(stats) return pd.DataFrame(flat_list) # Apply the function to the data team_df = flatten_team_data(df['teams']) # team_df.to_csv('route_locations_2019.csv') def flatten_player_data(players): flat_list = [] for team in players: team_info = team['team'] stats_labels = team['statistics'][0]['labels'] stats_keys = team['statistics'][0]['keys'] for player in team['statistics'][0]['athletes']: if player['stats']: player_stats = {key: value for key, value in zip(stats_keys, player['stats'])} player_info = player['athlete'] player_data = { 'player_id': player_info['id'], 'player_name': player_info['displayName'], 'player_shortName': player_info['shortName'], 'player_position': player_info['position']['displayName'], 'team_id': team_info['id'], 'team_location': team_info['location'], 'team_name': team_info['name'], 'team_abbreviation': team_info['abbreviation'], 'team_displayName': team_info['displayName'], } player_data.update({label: player_stats.get(key, '') for label, key in zip(stats_labels, stats_keys)}) flat_list.append(player_data) return pd.DataFrame(flat_list) playerdf = flatten_player_data(players) st.subheader('Team Boxscore') team_df = team_df.drop(columns=['team_name','team_location','team_abbreviation','team_id']) team_df = team_df[['team_displayName'] + [col for col in team_df.columns if col != 'team_displayName']] st.write(team_df) st.subheader('Player Boxscore') st.write(playerdf[['player_name','team_displayName','player_position','MIN','FG','3PT','FT','OREB','DREB','REB','AST','STL','BLK','TO','PF','+/-','PTS']]) # # Check if the data was fetched successfully and if 'videos' exists # if 'videos' in nba_data and nba_data['videos']: # videos_data = nba_data['videos'] # # Convert to DataFrame # if isinstance(videos_data, list): # try: # videos_df = pd.DataFrame(videos_data) # # Check if 'links' column exists # if 'links' in videos_df.columns: # # Extract 'links' column # links_df = pd.json_normalize(videos_df['links']) # with st.expander('Videos'): # for index, row in links_df.iterrows(): # link = row['source.HD.href'] # st.video(link) # # Print the new DataFrame to verify # # Optionally, save the links DataFrame to a CSV file # else: # st.error("'links' column not found in the DataFrame.") # except ValueError as e: # print("Error creating DataFrame:", e) # else: # st.error("Expected a list of dictionaries or similar format.") # else: # st.write("") else: image_url = 'https://i.imgur.com/3oGJTcf.png' st.markdown(f'', unsafe_allow_html=True)