Update app.py
Browse files
app.py
CHANGED
@@ -1,12 +1,13 @@
|
|
1 |
import spaces
|
2 |
import os
|
3 |
import gradio as gr
|
4 |
-
import torch
|
5 |
import numpy as np
|
6 |
import random
|
7 |
-
from diffusers import FluxPipeline
|
|
|
8 |
from translatepy import Translator
|
9 |
-
from huggingface_hub import hf_hub_download
|
10 |
import requests
|
11 |
import re
|
12 |
|
@@ -14,7 +15,7 @@ os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1"
|
|
14 |
translator = Translator()
|
15 |
HF_TOKEN = os.environ.get("HF_TOKEN", None)
|
16 |
# Constants
|
17 |
-
|
18 |
MAX_SEED = np.iinfo(np.int32).max
|
19 |
|
20 |
CSS = """
|
@@ -30,54 +31,27 @@ JS = """function () {
|
|
30 |
}
|
31 |
}"""
|
32 |
|
33 |
-
|
34 |
-
pipe = FluxPipeline.from_pretrained(model, torch_dtype=torch.bfloat16)
|
35 |
|
36 |
-
def scrape_lora_link(url):
|
37 |
-
try:
|
38 |
-
# Send a GET request to the URL
|
39 |
-
response = requests.get(url)
|
40 |
-
response.raise_for_status() # Raise an exception for bad status codes
|
41 |
|
42 |
-
|
43 |
-
content = response.text
|
44 |
-
|
45 |
-
# Use regular expression to find the link
|
46 |
-
pattern = r'href="(.*?lora.*?\.safetensors\?download=true)"'
|
47 |
-
match = re.search(pattern, content)
|
48 |
-
|
49 |
-
if match:
|
50 |
-
safetensors_url = match.group(1)
|
51 |
-
filename = safetensors_url.split('/')[-1].split('?')[0] # Extract the filename from the URL
|
52 |
-
return filename
|
53 |
-
else:
|
54 |
-
return None
|
55 |
-
|
56 |
-
except requests.RequestException as e:
|
57 |
-
print(f"An error occurred while fetching the URL: {e}")
|
58 |
-
return None
|
59 |
-
|
60 |
-
def enable_lora(lora_scale, lora_in, lora_add):
|
61 |
pipe.unload_lora_weights()
|
62 |
if not lora_in and not lora_add:
|
63 |
-
return
|
64 |
else:
|
65 |
if lora_add:
|
66 |
lora_in = lora_add
|
67 |
-
|
68 |
-
lora_name = scrape_lora_link(url)
|
69 |
-
pipe.load_lora_weights(lora_in, weight_name=lora_name)
|
70 |
-
pipe.fuse_lora(lora_scale=lora_scale)
|
71 |
|
72 |
-
@spaces.GPU(
|
73 |
def generate_image(
|
74 |
prompt:str,
|
|
|
75 |
width:int=768,
|
76 |
height:int=1024,
|
77 |
scales:float=3.5,
|
78 |
steps:int=24,
|
79 |
-
seed:int=-1
|
80 |
-
nums:int=1):
|
81 |
|
82 |
pipe.to(device="cuda")
|
83 |
|
@@ -88,26 +62,29 @@ def generate_image(
|
|
88 |
|
89 |
text = str(translator.translate(prompt, 'English'))
|
90 |
|
91 |
-
generator = torch.Generator().manual_seed(seed)
|
92 |
-
|
93 |
|
94 |
-
|
95 |
prompt=text,
|
96 |
height=height,
|
97 |
width=width,
|
98 |
guidance_scale=scales,
|
99 |
-
output_type="pil",
|
100 |
num_inference_steps=steps,
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
105 |
|
106 |
-
return
|
107 |
|
108 |
def gen(
|
109 |
prompt:str,
|
110 |
-
lora_scale:float=1.0,
|
111 |
lora_in:str="",
|
112 |
lora_add:str="",
|
113 |
width:int=768,
|
@@ -115,11 +92,10 @@ def gen(
|
|
115 |
scales:float=3.5,
|
116 |
steps:int=24,
|
117 |
seed:int=-1,
|
118 |
-
nums:int=1,
|
119 |
progress=gr.Progress(track_tqdm=True)
|
120 |
):
|
121 |
-
enable_lora(
|
122 |
-
return generate_image(prompt,width,height,scales,steps,seed
|
123 |
|
124 |
|
125 |
|
@@ -151,11 +127,13 @@ examples = [
|
|
151 |
# Gradio Interface
|
152 |
|
153 |
with gr.Blocks(css=CSS, js=JS, theme="Nymbo/Nymbo_Theme") as demo:
|
154 |
-
gr.HTML("<h1><center>Flux Labs</center></h1>")
|
155 |
-
gr.HTML("<p><center>Choose the LoRA model on the
|
156 |
with gr.Row():
|
157 |
with gr.Column(scale=4):
|
158 |
-
|
|
|
|
|
159 |
with gr.Row():
|
160 |
prompt = gr.Textbox(label='Enter Your Prompt (Multi-Languages)', placeholder="Enter prompt...", scale=6)
|
161 |
sendBtn = gr.Button(scale=1, variant='primary')
|
@@ -196,20 +174,6 @@ with gr.Blocks(css=CSS, js=JS, theme="Nymbo/Nymbo_Theme") as demo:
|
|
196 |
step=1,
|
197 |
value=-1,
|
198 |
)
|
199 |
-
nums = gr.Slider(
|
200 |
-
label="Image Numbers",
|
201 |
-
minimum=1,
|
202 |
-
maximum=4,
|
203 |
-
step=1,
|
204 |
-
value=1,
|
205 |
-
)
|
206 |
-
lora_scale = gr.Slider(
|
207 |
-
label="LoRA Scale",
|
208 |
-
minimum=0.1,
|
209 |
-
maximum=1.0,
|
210 |
-
step=0.1,
|
211 |
-
value=1.0,
|
212 |
-
)
|
213 |
lora_in = gr.Dropdown(
|
214 |
choices=["Shakker-Labs/FLUX.1-dev-LoRA-blended-realistic-illustration", "Shakker-Labs/AWPortrait-FL",""],
|
215 |
label="LoRA Model",
|
@@ -223,8 +187,8 @@ with gr.Blocks(css=CSS, js=JS, theme="Nymbo/Nymbo_Theme") as demo:
|
|
223 |
)
|
224 |
gr.Examples(
|
225 |
examples=examples,
|
226 |
-
inputs=[prompt,
|
227 |
-
outputs=[
|
228 |
fn=gen,
|
229 |
cache_examples="lazy",
|
230 |
examples_per_page=4,
|
@@ -238,17 +202,15 @@ with gr.Blocks(css=CSS, js=JS, theme="Nymbo/Nymbo_Theme") as demo:
|
|
238 |
fn=gen,
|
239 |
inputs=[
|
240 |
prompt,
|
241 |
-
lora_scale,
|
242 |
lora_in,
|
243 |
lora_add,
|
244 |
width,
|
245 |
height,
|
246 |
scales,
|
247 |
steps,
|
248 |
-
seed
|
249 |
-
nums
|
250 |
],
|
251 |
-
outputs=[
|
252 |
api_name="run",
|
253 |
)
|
254 |
|
|
|
1 |
import spaces
|
2 |
import os
|
3 |
import gradio as gr
|
4 |
+
#import torch
|
5 |
import numpy as np
|
6 |
import random
|
7 |
+
#from diffusers import FluxPipeline
|
8 |
+
from huggingface_hub import AsyncInferenceClient
|
9 |
from translatepy import Translator
|
10 |
+
#from huggingface_hub import hf_hub_download
|
11 |
import requests
|
12 |
import re
|
13 |
|
|
|
15 |
translator = Translator()
|
16 |
HF_TOKEN = os.environ.get("HF_TOKEN", None)
|
17 |
# Constants
|
18 |
+
basemodel = "black-forest-labs/FLUX.1-dev"
|
19 |
MAX_SEED = np.iinfo(np.int32).max
|
20 |
|
21 |
CSS = """
|
|
|
31 |
}
|
32 |
}"""
|
33 |
|
34 |
+
client = AsyncInferenceClient()
|
|
|
35 |
|
|
|
|
|
|
|
|
|
|
|
36 |
|
37 |
+
def enable_lora(lora_in, lora_add):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
pipe.unload_lora_weights()
|
39 |
if not lora_in and not lora_add:
|
40 |
+
return basemodel
|
41 |
else:
|
42 |
if lora_add:
|
43 |
lora_in = lora_add
|
44 |
+
return lora_in
|
|
|
|
|
|
|
45 |
|
46 |
+
@spaces.GPU()
|
47 |
def generate_image(
|
48 |
prompt:str,
|
49 |
+
model:str,
|
50 |
width:int=768,
|
51 |
height:int=1024,
|
52 |
scales:float=3.5,
|
53 |
steps:int=24,
|
54 |
+
seed:int=-1):
|
|
|
55 |
|
56 |
pipe.to(device="cuda")
|
57 |
|
|
|
62 |
|
63 |
text = str(translator.translate(prompt, 'English'))
|
64 |
|
65 |
+
#generator = torch.Generator().manual_seed(seed)
|
|
|
66 |
|
67 |
+
image1 = await client.text_to_image(
|
68 |
prompt=text,
|
69 |
height=height,
|
70 |
width=width,
|
71 |
guidance_scale=scales,
|
|
|
72 |
num_inference_steps=steps,
|
73 |
+
model=basemodel,
|
74 |
+
)
|
75 |
+
image2 = await client.text_to_image(
|
76 |
+
prompt=text,
|
77 |
+
height=height,
|
78 |
+
width=width,
|
79 |
+
guidance_scale=scales,
|
80 |
+
num_inference_steps=steps,
|
81 |
+
model=model,
|
82 |
+
)
|
83 |
|
84 |
+
return image1, image2, seed
|
85 |
|
86 |
def gen(
|
87 |
prompt:str,
|
|
|
88 |
lora_in:str="",
|
89 |
lora_add:str="",
|
90 |
width:int=768,
|
|
|
92 |
scales:float=3.5,
|
93 |
steps:int=24,
|
94 |
seed:int=-1,
|
|
|
95 |
progress=gr.Progress(track_tqdm=True)
|
96 |
):
|
97 |
+
model = enable_lora(lora_in, lora_add)
|
98 |
+
return generate_image(prompt,model,width,height,scales,steps,seed)
|
99 |
|
100 |
|
101 |
|
|
|
127 |
# Gradio Interface
|
128 |
|
129 |
with gr.Blocks(css=CSS, js=JS, theme="Nymbo/Nymbo_Theme") as demo:
|
130 |
+
gr.HTML("<h1><center>Flux Labs(vs LoRA)</center></h1>")
|
131 |
+
gr.HTML("<p><center>Choose the LoRA model on the menu</center></p>")
|
132 |
with gr.Row():
|
133 |
with gr.Column(scale=4):
|
134 |
+
with gr.Row():
|
135 |
+
img1 = gr.Gallery(label='flux Generated Image', columns = 1, preview=True, height=600)
|
136 |
+
img2 = gr.Gallery(label='LoRA Generated Image', columns = 1, preview=True, height=600)
|
137 |
with gr.Row():
|
138 |
prompt = gr.Textbox(label='Enter Your Prompt (Multi-Languages)', placeholder="Enter prompt...", scale=6)
|
139 |
sendBtn = gr.Button(scale=1, variant='primary')
|
|
|
174 |
step=1,
|
175 |
value=-1,
|
176 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
177 |
lora_in = gr.Dropdown(
|
178 |
choices=["Shakker-Labs/FLUX.1-dev-LoRA-blended-realistic-illustration", "Shakker-Labs/AWPortrait-FL",""],
|
179 |
label="LoRA Model",
|
|
|
187 |
)
|
188 |
gr.Examples(
|
189 |
examples=examples,
|
190 |
+
inputs=[prompt,lora_in],
|
191 |
+
outputs=[img1, img2, seed],
|
192 |
fn=gen,
|
193 |
cache_examples="lazy",
|
194 |
examples_per_page=4,
|
|
|
202 |
fn=gen,
|
203 |
inputs=[
|
204 |
prompt,
|
|
|
205 |
lora_in,
|
206 |
lora_add,
|
207 |
width,
|
208 |
height,
|
209 |
scales,
|
210 |
steps,
|
211 |
+
seed
|
|
|
212 |
],
|
213 |
+
outputs=[img1, img2, seed],
|
214 |
api_name="run",
|
215 |
)
|
216 |
|