import gradio as gr from groq import Groq import os # Set your Groq API key API_KEY = os.getenv("API_KEY") client = Groq(api_key=API_KEY) # Pass API key explicitly def respond(message, history, system_message, max_tokens, temperature, top_p): messages = [{"role": "system", "content": system_message}] for user_input, bot_response in history: if user_input: messages.append({"role": "user", "content": user_input}) if bot_response: messages.append({"role": "assistant", "content": bot_response}) messages.append({"role": "user", "content": message}) completion = client.chat.completions.create( model="mixtral-8x7b-32768", messages=messages, temperature=temperature, max_completion_tokens=max_tokens, top_p=top_p, stream=True, stop=None, ) response = "" for chunk in completion: token = chunk.choices[0].delta.content or "" response += token yield response # Gradio Interface demo = gr.ChatInterface( respond, additional_inputs=[ gr.Textbox(value="You are a friendly AI assistant.", label="System message"), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"), ], ) if __name__ == "__main__": demo.launch()