import transformers, accelerate import requests print(accelerate.__version__) print(transformers.__version__) # Image Captioning from transformers import AutoProcessor from transformers import AutoModelForCausalLM import torch import streamlit as st device = "cuda" if torch.cuda.is_available() else "cpu" # Set device to GPU if its available checkpoint = "microsoft/git-base" processor = AutoProcessor.from_pretrained(checkpoint) # We would load a tokenizer for language. Here we load a processor to process images model = AutoModelForCausalLM.from_pretrained(checkpoint).to(device) # Text Search st.title("Flower Type Demo") st.subheader("Upload an image and See how Chinese qisper works") upload_file = st.file_uploader('Upload an Image') from PIL import Image import torch from diffusers import StableDiffusionPipeline import time t1 = time.time() model_id = "CompVis/stable-diffusion-v1-4" device = "cpu" pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16) pipe = pipe.to(device) if upload_file: test_sample = Image.open(upload_file) inputs = processor(images=test_sample, return_tensors="pt").to(device) pixel_values = inputs.pixel_values.to(device) generated_ids = model.generate(pixel_values=pixel_values, max_length=50) generated_caption = processor.batch_decode(generated_ids, skip_special_tokens=True)[0] for i in range(10): st.write('New Caption is :') st.write(generated_caption) image = pipe(generated_caption).images[0] display(image) print("Model Loading + Inference time = " + str(time.time() - t1) + " seconds") st.write("Showing the Image") st.image (image, caption=name, width=None, use_column_width=None, clamp=False, channels='RGB', output_format='auto') inputs = processor(images=image, return_tensors="pt").to(device) pixel_values = inputs.pixel_values.to(device) generated_ids = model.generate(pixel_values=pixel_values, max_length=50) generated_caption = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]