from huggingface_hub import InferenceClient import gradio as gr import os import re import requests import http.client import typing import urllib.request import vertexai from vertexai.generative_models import GenerativeModel, Image vertexai.init(project=os.getenv('project_id')) model = GenerativeModel("gemini-1.0-pro-vision") client = InferenceClient("google/gemma-7b-it") def extract_image_urls(text): url_regex = r"(https?:\/\/.*\.(?:png|jpg|jpeg|gif|webp|svg))" image_urls = re.findall(url_regex, text, flags=re.IGNORECASE) valid_image_url = "" for url in image_urls: try: response = requests.head(url) # Use HEAD request for efficiency if response.status_code in range(200, 300) and 'image' in response.headers.get('content-type', ''): valid_image_url = url except requests.exceptions.RequestException: pass # Ignore inaccessible URLs return valid_image_url def load_image_from_url(image_url: str) -> Image: with urllib.request.urlopen(image_url) as response: response = typing.cast(http.client.HTTPResponse, response) image_bytes = response.read() return Image.from_bytes(image_bytes) def search(url): image = load_image_from_url(url) response = model.generate_content([image,"what is shown in this image?"]) return response.text def format_prompt(message, history): prompt = "" for user_prompt, bot_response in history: prompt += f"user\n{user_prompt}\n" prompt += f"model\n{bot_response}\n" prompt += f"user\n{message}\nmodel\n" return prompt def generate( prompt, history, system_prompt, temperature=0.9, max_new_tokens=256, top_p=0.95, repetition_penalty=1.0, ): temperature = float(temperature) if temperature < 1e-2: temperature = 1e-2 top_p = float(top_p) generate_kwargs = dict( temperature=temperature, max_new_tokens=max_new_tokens, top_p=top_p, repetition_penalty=repetition_penalty, do_sample=True, seed=42, ) image = extract_image_urls(prompt) if image: prompt = prompt.replace(image, search(image)) formatted_prompt = format_prompt(f"{system_prompt}, {prompt}", history) stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False) output = "" for response in stream: output += response.token.text yield output return output additional_inputs=[ gr.Textbox( label="System Prompt", max_lines=1, interactive=True, ), gr.Slider( label="Temperature", value=0.9, minimum=0.0, maximum=1.0, step=0.05, interactive=True, info="Higher values produce more diverse outputs", ), gr.Slider( label="Max new tokens", value=256, minimum=0, maximum=1048, step=64, interactive=True, info="The maximum numbers of new tokens", ), gr.Slider( label="Top-p (nucleus sampling)", value=0.90, minimum=0.0, maximum=1, step=0.05, interactive=True, info="Higher values sample more low-probability tokens", ), gr.Slider( label="Repetition penalty", value=1.2, minimum=1.0, maximum=2.0, step=0.05, interactive=True, info="Penalize repeated tokens", ) ] examples=[["I'm planning a vacation to Japan. Can you suggest a one-week itinerary including must-visit places and local cuisines to try?", None, None, None, None, None, ], ["Can you write a short story about a time-traveling detective who solves historical mysteries?", None, None, None, None, None,], ["I'm trying to learn French. Can you provide some common phrases that would be useful for a beginner, along with their pronunciations?", None, None, None, None, None,], ["I have chicken, rice, and bell peppers in my kitchen. Can you suggest an easy recipe I can make with these ingredients?", None, None, None, None, None,], ["Can you explain how the QuickSort algorithm works and provide a Python implementation?", None, None, None, None, None,], ["What are some unique features of Rust that make it stand out compared to other systems programming languages like C++?", None, None, None, None, None,], ] gr.ChatInterface( fn=generate, chatbot=gr.Chatbot(show_label=True, show_share_button=True, show_copy_button=True, likeable=True, layout="bubble", bubble_full_width=False), additional_inputs=additional_inputs, title="Hey Gemini", description="Gemini Sprint submission by Rishiraj Acharya. Uses Google's Gemini 1.0 Pro Vision multimodal model from Vertex AI with Google's Gemma 7B Instruct model from Hugging Face.", theme="Soft", examples=examples, concurrency_limit=20, ).launch(show_api=False)