from huggingface_hub import InferenceClient import gradio as gr import os import re import requests import http.client import typing import urllib.request import vertexai from vertexai.generative_models import GenerativeModel, Image with open(".config/application_default_credentials.json", 'w') as file: file.write(str(os.getenv('credentials'))) vertexai.init(project=os.getenv('project_id')) model = GenerativeModel("gemini-1.0-pro-vision") client = InferenceClient("google/gemma-7b-it") def extract_image_urls(text): url_regex = r"(https?:\/\/.*\.(?:png|jpg|jpeg|gif|webp|svg))" image_urls = re.findall(url_regex, text, flags=re.IGNORECASE) valid_image_url = "" for url in image_urls: try: response = requests.head(url) # Use HEAD request for efficiency if response.status_code in range(200, 300) and 'image' in response.headers.get('content-type', ''): valid_image_url = url except requests.exceptions.RequestException: pass # Ignore inaccessible URLs return valid_image_url def load_image_from_url(image_url: str) -> Image: with urllib.request.urlopen(image_url) as response: response = typing.cast(http.client.HTTPResponse, response) image_bytes = response.read() return Image.from_bytes(image_bytes) def search(url): image = load_image_from_url(url) response = model.generate_content([image,"Describe what is shown in this image."]) return response.text # def format_prompt(message, history, cust_p): # prompt = "" # for user_prompt, bot_response in history: # prompt += f"user{user_prompt}" # prompt += f"model{bot_response}" # prompt += cust_p.replace("USER_INPUT",message) # return prompt # def generate( # prompt, history, system_prompt, temperature=0.9, max_new_tokens=256, top_p=0.95, repetition_penalty=1.0, # ): # custom_prompt="userUSER_INPUTmodel" # temperature = float(temperature) # if temperature < 1e-2: # temperature = 1e-2 # top_p = float(top_p) # generate_kwargs = dict( # temperature=temperature, # max_new_tokens=max_new_tokens, # top_p=top_p, # repetition_penalty=repetition_penalty, # do_sample=True, # seed=42, # ) # image = extract_image_urls(prompt) # if image: # image_description = "Image Description: " + search(image) # prompt = prompt.replace(image, image_description) # print(prompt) # formatted_prompt = format_prompt(f"{system_prompt}, {prompt}", history, custom_prompt) # stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False) # output = "" # for response in stream: # output += response.token.text # yield output # return output # additional_inputs=[ # gr.Textbox( # label="System Prompt", # max_lines=1, # interactive=True, # ), # gr.Slider( # label="Temperature", # value=0.9, # minimum=0.0, # maximum=1.0, # step=0.05, # interactive=True, # info="Higher values produce more diverse outputs", # ), # gr.Slider( # label="Max new tokens", # value=256, # minimum=0, # maximum=1048, # step=64, # interactive=True, # info="The maximum numbers of new tokens", # ), # gr.Slider( # label="Top-p (nucleus sampling)", # value=0.90, # minimum=0.0, # maximum=1, # step=0.05, # interactive=True, # info="Higher values sample more low-probability tokens", # ), # gr.Slider( # label="Repetition penalty", # value=1.2, # minimum=1.0, # maximum=2.0, # step=0.05, # interactive=True, # info="Penalize repeated tokens", # ) # ] # examples=[["What are they doing here https://upload.wikimedia.org/wikipedia/commons/3/38/Two_dancers.jpg ?", None, None, None, None, None]] # gr.ChatInterface( # fn=generate, # chatbot=gr.Chatbot(show_label=True, show_share_button=True, show_copy_button=True, likeable=True, layout="bubble", bubble_full_width=False), # additional_inputs=additional_inputs, # title="Gemma Gemini Multimodal Chatbot", # description="Gemini Sprint submission by Rishiraj Acharya. Uses Google's Gemini 1.0 Pro Vision multimodal model from Vertex AI with Google's Gemma 7B Instruct model from Hugging Face. Google Cloud credits are provided for this project.", # theme="Soft", # examples=examples, # concurrency_limit=20, # ).launch(show_api=False) import random def load_models(inp): return gr.update(label=models[inp]) def format_prompt(message, history, cust_p): prompt = "" if history: for user_prompt, bot_response in history: prompt += f"user{user_prompt}" prompt += f"model{bot_response}" prompt+=cust_p.replace("USER_INPUT",message) return prompt def chat_inf(system_prompt,prompt,history,memory,client_choice,seed,temp,tokens,top_p,rep_p,chat_mem,cust_p): hist_len=0 if not history: history = [] hist_len=0 if not memory: memory = [] mem_len=0 if memory: for ea in memory[0-chat_mem:]: hist_len+=len(str(ea)) in_len=len(system_prompt+prompt)+hist_len if (in_len+tokens) > 8000: history.append((prompt,"Wait, that's too many tokens, please reduce the 'Chat Memory' value, or reduce the 'Max new tokens' value")) yield history,memory else: generate_kwargs = dict( temperature=temp, max_new_tokens=tokens, top_p=top_p, repetition_penalty=rep_p, do_sample=True, seed=seed, ) image = extract_image_urls(prompt) if image: image_description = "Image Description: " + search(image) prompt = prompt.replace(image, image_description) print(prompt) if system_prompt: formatted_prompt = format_prompt(f"{system_prompt}, {prompt}", memory[0-chat_mem:],cust_p) else: formatted_prompt = format_prompt(prompt, memory[0-chat_mem:],cust_p) stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=True) output = "" for response in stream: output += response.token.text yield [(prompt,output)],memory history.append((prompt,output)) memory.append((prompt,output)) yield history,memory def clear_fn(): return None,None,None,None rand_val=random.randint(1,1111111111111111) def check_rand(inp,val): if inp==True: return gr.Slider(label="Seed", minimum=1, maximum=1111111111111111, value=random.randint(1,1111111111111111)) else: return gr.Slider(label="Seed", minimum=1, maximum=1111111111111111, value=int(val)) with gr.Blocks() as app: memory=gr.State() gr.HTML("""

Gemma Gemini Multimodal Chatbot


Gemini Sprint submission by Rishiraj Acharya. Uses Google's Gemini 1.0 Pro Vision multimodal model from Vertex AI with Google's Gemma 7B Instruct model from Hugging Face. Google Cloud credits are provided for this project.

""") chat_b = gr.Chatbot(show_label=True, show_share_button=True, show_copy_button=True, likeable=True, layout="bubble", bubble_full_width=False) with gr.Group(): with gr.Row(): with gr.Column(scale=3): inp = gr.Textbox(label="Prompt") sys_inp = gr.Textbox(label="System Prompt (optional)") with gr.Accordion("Prompt Format",open=False): custom_prompt=gr.Textbox(label="Modify Prompt Format", info="For testing purposes. 'USER_INPUT' is where 'SYSTEM_PROMPT, PROMPT' will be placed", lines=3,value="userUSER_INPUTmodel") with gr.Row(): with gr.Column(scale=2): btn = gr.Button("Chat") with gr.Column(scale=1): with gr.Group(): stop_btn=gr.Button("Stop") clear_btn=gr.Button("Clear") client_choice=gr.Dropdown(label="Models",type='index',choices=[c for c in models],value=models[0],interactive=True) with gr.Column(scale=1): with gr.Group(): rand = gr.Checkbox(label="Random Seed", value=True) seed=gr.Slider(label="Seed", minimum=1, maximum=1111111111111111,step=1, value=rand_val) tokens = gr.Slider(label="Max new tokens",value=1600,minimum=0,maximum=8000,step=64,interactive=True, visible=True,info="The maximum number of tokens") temp=gr.Slider(label="Temperature",step=0.01, minimum=0.01, maximum=1.0, value=0.49) top_p=gr.Slider(label="Top-P",step=0.01, minimum=0.01, maximum=1.0, value=0.49) rep_p=gr.Slider(label="Repetition Penalty",step=0.01, minimum=0.1, maximum=2.0, value=0.99) chat_mem=gr.Number(label="Chat Memory", info="Number of previous chats to retain",value=4) client_choice.change(load_models,client_choice,[chat_b]) app.load(load_models,client_choice,[chat_b]) chat_sub=inp.submit(check_rand,[rand,seed],seed).then(chat_inf,[sys_inp,inp,chat_b,memory,client_choice,seed,temp,tokens,top_p,rep_p,chat_mem,custom_prompt],[chat_b,memory]) go=btn.click(check_rand,[rand,seed],seed).then(chat_inf,[sys_inp,inp,chat_b,memory,client_choice,seed,temp,tokens,top_p,rep_p,chat_mem,custom_prompt],[chat_b,memory]) stop_btn.click(None,None,None,cancels=[go,chat_sub]) clear_btn.click(clear_fn,None,[inp,sys_inp,chat_b,memory]) app.queue(default_concurrency_limit=10).launch()