Spaces:
Build error
Build error
Commit
·
ce70e1e
1
Parent(s):
268e7b8
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,91 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import os
|
3 |
+
import PyPDF2 # Import PyPDF2 for PDF text extraction
|
4 |
+
import nltk
|
5 |
+
from nltk.tokenize import word_tokenize
|
6 |
+
from nltk.corpus import stopwords
|
7 |
+
from sklearn.feature_extraction.text import TfidfVectorizer
|
8 |
+
from sklearn.metrics.pairwise import cosine_similarity
|
9 |
+
|
10 |
+
# Load NLTK resources
|
11 |
+
nltk.download('punkt')
|
12 |
+
nltk.download('stopwords')
|
13 |
+
|
14 |
+
# Function to extract text from PDFs using PyPDF2
|
15 |
+
def extract_text_from_pdf(pdf_path):
|
16 |
+
pdf_text = ""
|
17 |
+
with open(pdf_path, 'rb') as pdf_file:
|
18 |
+
pdf_reader = PyPDF2.PdfFileReader(pdf_file)
|
19 |
+
for page_num in range(pdf_reader.getNumPages()):
|
20 |
+
page = pdf_reader.getPage(page_num)
|
21 |
+
pdf_text += page.extractText()
|
22 |
+
return pdf_text
|
23 |
+
|
24 |
+
# Function to clean and tokenize text
|
25 |
+
def clean_and_tokenize(text):
|
26 |
+
tokens = word_tokenize(text.lower())
|
27 |
+
tokens = [word for word in tokens if word.isalnum() and word not in stopwords.words('english')]
|
28 |
+
return ' '.join(tokens)
|
29 |
+
|
30 |
+
# Function to preprocess the documents in the specified directory
|
31 |
+
def preprocess_documents(dataset_dir):
|
32 |
+
documents = []
|
33 |
+
for filename in os.listdir(dataset_dir):
|
34 |
+
if filename.endswith('.pdf'):
|
35 |
+
pdf_path = os.path.join(dataset_dir, filename)
|
36 |
+
pdf_text = extract_text_from_pdf(pdf_path)
|
37 |
+
clean_text = clean_and_tokenize(pdf_text)
|
38 |
+
documents.append(clean_text)
|
39 |
+
return documents
|
40 |
+
|
41 |
+
# Function to perform relevance matching and return top N documents
|
42 |
+
def perform_relevance_matching(query, *uploaded_files, dataset_dir):
|
43 |
+
# Preprocess the documents in the specified dataset directory
|
44 |
+
documents = preprocess_documents(dataset_dir)
|
45 |
+
|
46 |
+
# Combine the user-uploaded files into a single document
|
47 |
+
uploaded_documents = []
|
48 |
+
for file in uploaded_files:
|
49 |
+
uploaded_text = extract_text_from_pdf(file.name)
|
50 |
+
uploaded_documents.append(uploaded_text)
|
51 |
+
|
52 |
+
# Combine the uploaded documents and query
|
53 |
+
combined_documents = uploaded_documents + [query]
|
54 |
+
|
55 |
+
# Vectorize the combined documents
|
56 |
+
tfidf_vectorizer = TfidfVectorizer()
|
57 |
+
tfidf_matrix = tfidf_vectorizer.fit_transform(documents + combined_documents)
|
58 |
+
|
59 |
+
# Calculate cosine similarities between the combined documents and the dataset
|
60 |
+
cosine_similarities = cosine_similarity(tfidf_matrix[-len(combined_documents):], tfidf_matrix[:-len(combined_documents)])
|
61 |
+
|
62 |
+
# Rank documents by similarity score
|
63 |
+
document_scores = list(enumerate(cosine_similarities[0]))
|
64 |
+
sorted_documents = sorted(document_scores, key=lambda x: x[1], reverse=True)
|
65 |
+
|
66 |
+
# Extract the top N relevant documents
|
67 |
+
top_n = 5
|
68 |
+
top_documents = []
|
69 |
+
for i in range(min(top_n, len(sorted_documents))):
|
70 |
+
doc_index, score = sorted_documents[i]
|
71 |
+
document_text = documents[doc_index][:500] # Extract the first 500 characters of the document
|
72 |
+
top_documents.append((f"Document {doc_index + 1} (Similarity Score: {score:.4f})", document_text))
|
73 |
+
|
74 |
+
return top_documents
|
75 |
+
|
76 |
+
# Create a Gradio interface
|
77 |
+
iface = gr.Interface(
|
78 |
+
fn=perform_relevance_matching,
|
79 |
+
inputs=[
|
80 |
+
"text", # Query input
|
81 |
+
gr.File(multiple=True), # Allow multiple file uploads
|
82 |
+
"text" # Dataset directory input
|
83 |
+
],
|
84 |
+
outputs=gr.Table(),
|
85 |
+
live=True,
|
86 |
+
title="Legal Research Assistant",
|
87 |
+
description="Enter your legal query, upload files, and specify the dataset directory.",
|
88 |
+
)
|
89 |
+
|
90 |
+
# Launch the Gradio interface
|
91 |
+
iface.launch()
|