#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Sat Jun 24 23:11:36 2023 @author: rishabhsharma """ import numpy as np import pickle import streamlit as st # loading the saved model loaded_model = pickle.load(open('trained_model.sav', 'rb')) # creating a function for Prediction def diabetes_prediction(input_data): # changing the input_data to numpy array input_data_as_numpy_array = np.asarray(input_data) # reshape the array as we are predicting for one instance input_data_reshaped = input_data_as_numpy_array.reshape(1,-1) prediction = loaded_model.predict(input_data_reshaped) print(prediction) if (prediction[0] == 0): return 'The person is not diabetic' else: return 'The person is diabetic' def main(): # giving a title st.title('Diabetes Prediction Web App') # getting the input data from the user Pregnancies = st.text_input('Number of Pregnancies') Glucose = st.text_input('Glucose Level') BloodPressure = st.text_input('Blood Pressure value') SkinThickness = st.text_input('Skin Thickness value') Insulin = st.text_input('Insulin Level') BMI = st.text_input('BMI value') DiabetesPedigreeFunction = st.text_input('Diabetes Pedigree Function value') Age = st.text_input('Age of the Person') # code for Prediction diagnosis = '' # creating a button for Prediction if st.button('Diabetes Test Result'): diagnosis = diabetes_prediction([Pregnancies, Glucose, BloodPressure, SkinThickness, Insulin, BMI, DiabetesPedigreeFunction, Age]) st.success(diagnosis) if __name__ == '__main__': main()