import gradio as gr import numpy as np from tensorflow import keras from keras.models import load_model # Load the trained model model = load_model('skin_model.h5') # Define a function to make predictions def predict(image): # Preprocess the image image = image / 255.0 image = np.expand_dims(image, axis=0) # Make a prediction using the model prediction = model.predict(image) # Get the sigmoid percentage sigmoid_percentage = prediction[0][0] * 100 # Get the predicted class label if prediction[0][0] < 0.5: label = 'Benign' else: label = 'Malignant' return f"{label} ({sigmoid_percentage:.2f}%)" examples = [["benign.jpg"], ["malignant.jpg"]] # Define input and output components image_input = gr.inputs.Image(shape=(150, 150)) label_output = gr.outputs.Label() # Define a Gradio interface for user interaction iface = gr.Interface( fn=predict, inputs=image_input, outputs=label_output, examples=examples, title="Skin Cancer Classification", description="Predicts whether a Skin Lesion is Cancerous or not.", theme="default", # Choose a theme: "default", "compact", "huggingface" layout="vertical", # Choose a layout: "vertical", "horizontal", "double" live=False )