import streamlit as st import pickle import numpy as np # import the model pipe = pickle.load(open('pipe.pkl','rb')) df = pickle.load(open('df.pkl','rb')) st.title("Smartphone Price Predictor") # Main page content st.image('mobile.png', use_column_width=True) # brand Company = st.selectbox('Brand',df['Brand'].unique()) # year Released_Year = st.selectbox('Released Year',df['Released Year'].unique()) # OS Operating_System = st.selectbox('OS',df['OS'].unique()) # size Display = st.number_input('Display (Inches)') # Camera Camera = st.number_input('Camera (MP)') # resolution Camera_Resolution= st.selectbox('Camera Resolution',df['Camera Resolution'].unique()) # Ram Ram = st.number_input('Ram (GB)') # Battery Battery = st.number_input('Battery (mAh)') if st.button('Predict Price'): query = np.array([Company, Released_Year, Operating_System, Display, Camera, Camera_Resolution, Ram, Battery]) query = query.reshape(1, -1) st.title("The predicted price of this configuration mobile is " + str(int(np.exp(pipe.predict(query)[0]))) + ' TK.')