import os import streamlit as st from dotenv import load_dotenv from langchain.callbacks.base import BaseCallbackHandler from langchain.chains import ConversationalRetrievalChain from langchain.chat_models import ChatOpenAI from langchain.embeddings import OpenAIEmbeddings from langchain.memory import ConversationBufferMemory from langchain.memory.chat_message_histories import StreamlitChatMessageHistory from langchain.vectorstores import Chroma load_dotenv() website_url = os.environ.get('WEBSITE_URL', 'a website') st.set_page_config(page_title=f'Chat with {website_url}') st.title('Chat with a website') @st.cache_resource(ttl='1h') def get_retriever(): embeddings = OpenAIEmbeddings() vectordb = Chroma(persist_directory='db', embedding_function=embeddings) retriever = vectordb.as_retriever(search_type='mmr') return retriever class StreamHandler(BaseCallbackHandler): def __init__(self, container: st.delta_generator.DeltaGenerator, initial_text: str = ''): self.container = container self.text = initial_text def on_llm_new_token(self, token: str, **kwargs) -> None: self.text += token self.container.markdown(self.text) retriever = get_retriever() msgs = StreamlitChatMessageHistory() memory = ConversationBufferMemory(memory_key='chat_history', chat_memory=msgs, return_messages=True) llm = ChatOpenAI(model_name='gpt-3.5-turbo', temperature=0, streaming=True) qa_chain = ConversationalRetrievalChain.from_llm( llm, retriever=retriever, memory=memory, verbose=False ) if st.sidebar.button('Clear message history') or len(msgs.messages) == 0: msgs.clear() msgs.add_ai_message(f'Ask me anything about {website_url}!') avatars = {'human': 'user', 'ai': 'assistant'} for msg in msgs.messages: st.chat_message(avatars[msg.type]).write(msg.content) if user_query := st.chat_input(placeholder='Ask me anything!'): st.chat_message('user').write(user_query) with st.chat_message('assistant'): stream_handler = StreamHandler(st.empty()) response = qa_chain.run(user_query, callbacks=[stream_handler])