import gradio as gr """ translation program for simple text 1. detect language from langdetect 2. translate to target language given by user Example from https://www.thepythoncode.com/article/machine-translation-using-huggingface-transformers-in-python user_input: string: string to be translated target_lang: language to be translated to Returns: string: translated string of text """ import argparse import langid from langdetect import DetectorFactory DetectorFactory.seed = 0 from langdetect import detect from transformers import pipeline def detect_lang(article, target_lang): """ Language Detection using library langdetect Args: article (string): article that user wish to translate target_lang (string): language user want to translate article into Returns: string: detected language short form """ result_lang = detect(article) print(result_lang) if result_lang == target_lang: return result_lang else: return result_lang def lang_detect(article, target_lang): """ Language Detection using library langid Args: article (string): article that user wish to translate target_lang (string): language user want to translate article into Returns: string: detected language short form """ result_lang = langid.classify(article) print(result_lang[0]) if result_lang == target_lang: return result_lang[0] else: return result_lang[0] def opus_trans(message, result_lang, target_lang): """ Translation by Helsinki-NLP model Args: article (string): article that user wishes to translate result_lang (string): detected language in short form target_lang (string): language that user wishes to translate article into Returns: string: translated piece of article based off target_lang """ task_name = f"translation_{result_lang}_to_{target_lang}" model_name = f"Helsinki-NLP/opus-mt-{result_lang}-{target_lang}" translator = pipeline(task_name, model=model_name, tokenizer=model_name) translated = translator(message)[0]["translation_text"] print(translated) return translated def greet(name): return "Hello " + name + "!!" iface = gr.ChatInterface(opus_trans) iface.launch()