import streamlit as st import pandas as pd import numpy as np from io import StringIO import asyncio from langchain.agents import initialize_agent, AgentType from langchain_community.callbacks import StreamlitCallbackHandler from langchain_community.tools import DuckDuckGoSearchRun from langchain_openai import ChatOpenAI api_key = st.secrets["OPENAI_API_KEY"] with st.sidebar: "[Get an OpenAI API key](https://platform.openai.com/account/api-keys)" "[View the source code](https://github.com/streamlit/llm-examples/blob/main/pages/2_Chat_with_search.py)" "[![Open in GitHub Codespaces](https://github.com/codespaces/badge.svg)](https://codespaces.new/streamlit/llm-examples?quickstart=1)" st.title("🔎 LangChain - Chat with search") """ In this example, we're using `StreamlitCallbackHandler` to display the thoughts and actions of an agent in an interactive Streamlit app. Try more LangChain 🤝 Streamlit Agent examples at [github.com/langchain-ai/streamlit-agent](https://github.com/langchain-ai/streamlit-agent). """ if "messages" not in st.session_state: st.session_state["messages"] = [ {"role": "assistant", "content": "Hi, I'm a chatbot who is trying to answer your questions"} ] for msg in st.session_state.messages: st.chat_message(msg["role"]).write(msg["content"]) if prompt := st.chat_input(placeholder="Who won the Women's U.S. Open in 2018?"): st.session_state.messages.append({"role": "user", "content": prompt}) st.chat_message("user").write(prompt) if not api_key: st.info("Please add your OpenAI API key to continue.") st.stop() llm = ChatOpenAI(model_name="gpt-3.5-turbo", openai_api_key=api_key, streaming=True) Search = DuckDuckGoSearchRun(name="Search") # Create a new event loop loop = asyncio.new_event_loop() asyncio.set_event_loop(loop) search_agent = initialize_agent([Search], llm, agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION, handle_parsing_errors=True) with st.chat_message("assistant"): st_cb = StreamlitCallbackHandler(st.container(), expand_new_thoughts=False) response = search_agent.run(st.session_state.messages, callbacks=[st_cb]) st.session_state.messages.append({"role": "assistant", "content": response}) st.write(response)